Skip to main content

Table 3 Prediction performance of the models in the training and validation sets

From: Development of a nomogram-based model incorporating radiomic features from follow-up longitudinal lung CT images to distinguish invasive adenocarcinoma from benign lesions: a retrospective study

 

Models

AUC

95%CI

Sensitivity

Specificity

Training set

CR model

0.694

0.630–0.752

0.45

0.85

 

T0 model

0.825

0.770–0.871

0.84

0.67

 

T1 model

0.858

0.857-0.900

0.71

0.86

 

Delta model

0.734

0.673–0.789

0.60

0.80

 

Nomogram

0.906

0.881–0.953

0.80

0.88

Validation set

CR model

0.578

0.457–0.658

0.21

0.96

 

T0 model

0.789

0.731–0.839

0.80

0.65

 

T1 model

0.817

0.749–0.854

0.83

0.75

 

Delta model

0.647

0.591–0.716

0.49

0.77

 

Nomogram

0.856

0.851–0.933

0.77

0.85

  1. CR model clinicoradiological model, T0 model T0 radiomic model, T1 model T1 radiomic model, Delta model Delta radiomic model.