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Abstract 

Background Chronic obstructive pulmonary disease (COPD) is a complex respiratory condition influenced by envi-
ronmental and genetic factors. Using next-generation sequencing, we aimed to identify dysregulated genes 
and potential therapeutic targets for COPD.

Methods Peripheral blood leukocyte RNA profiles from COPD patients and healthy controls were analyzed using 
next-generation sequencing. Key genes involved in COPD pathogenesis were identified through protein–protein 
interaction network analysis. In vitro, bronchial epithelial cells treated with cigarette smoke extract (CSE) were used 
to study the effects on gene expression, cell viability, apoptosis, and ferroptosis. Additionally, Lipocalin 2 (LCN2) inhibi-
tion experiments were conducted to elucidate its role in COPD-related cellular processes.

Results Analysis of RNA profiles revealed consistent downregulation of 17 genes and upregulation of 21 genes 
across all COPD groups. Among these, Cathelicidin Antimicrobial Peptide(CAMP), Defensin Alpha 4(DEFA4), Neutrophil 
Elastase(ELANE), LCN2 and Lactotransferrin(LTF) were identified as potentially important players in COPD pathogen-
esis. Particularly, LCN2 exhibited a close association with COPD and was found to be involved in cellular processes. 
In vitro experiments demonstrated that CSE treatment significantly increased LCN2 expression in bronchial epithe-
lial cells in a concentration-dependent manner. Moreover, CSE-induced apoptosis and ferroptosis were observed, 
along with alterations in cell viability, Glutathione content, Fe2 + accumulation, ROS: Reactive Oxygen Species 
and Malondialdehyde levels, Lactate Dehydrogenase(LDH) release and Glutathione Peroxidase 4(GPX4) expression. 
Inhibition of LCN2 expression partially reversed these effects, indicating the pivotal role of LCN2 in COPD-related cel-
lular processes.

Conclusion Our study identified six candidate genes: CAMP, DEFA4, ELANE, LCN2, and LTF were upregulated, HSPA1B 
was downregulated. Notably, LCN2 emerges as a significant biomarker in COPD pathogenesis, exerting its effects 
by promoting apoptosis and ferroptosis in bronchial epithelial cells.
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Introduction
Chronic obstructive pulmonary disease (COPD) repre-
sents a multifaceted respiratory condition characterized 
by progressive airway obstruction and inflammation, 
posing a significant global health challenge due to its 
increasing prevalence and high morbidity and mortality 
rates [1]. The disease’s pathogenesis is intricate, involv-
ing a cascade of molecular events influenced by both 
environmental exposures, such as cigarette smoke, and 
genetic predispositions, which collectively contribute to 
up to 60% of disease susceptibility [2].

The complexity of COPD pathophysiology encom-
passes several interrelated mechanisms, including 
chronic inflammation, oxidative stress, protease-antipro-
tease imbalance, and impaired host defense mechanisms 
[3]. These factors culminate in structural changes in the 
airways and alveolar destruction, leading to irreversible 
airflow limitation. Emerging research underscores the 
roles of programmed cell death pathways, specifically 
apoptosis and ferroptosis, in exacerbating COPD pro-
gression [4, 5]. Recent literature highlights their signifi-
cance, pointing towards promising directions for COPD 
research and treatment [6, 7]. Apoptosis, as a fundamen-
tal process involved in maintaining tissue homeostasis, 
triggered by persistent oxidative stress and inflammatory 
mediators, contributes to epithelial and endothelial cell 
loss, disrupting lung tissue integrity and function [8, 9]. 
Concurrently, dysregulated iron homeostasis and accu-
mulation, characteristic of ferroptosis, further aggravate 
cellular damage through lipid peroxidation and mito-
chondrial dysfunction [5, 10].

The bronchial epithelial cells, as a frontline barrier in 
the airways, play a pivotal role in COPD pathogenesis. 
Their susceptibility to apoptosis and ferroptosis sig-
nificantly impacts disease progression [4]. Apoptosis of 
these cells, induced by oxidative stress and inflamma-
tory cytokines, compromises epithelial barrier function 
and enhances inflammatory responses, perpetuating lung 
tissue damage [7, 11]. Similarly, ferroptosis in bronchial 
epithelial cells exacerbates oxidative stress and inflam-
mation, exacerbating tissue injury and impairing res-
piratory function [12]. Given the critical involvement 
of bronchial epithelial cell apoptosis and ferroptosis in 
COPD [13, 14],  identifying regulatory genes that mod-
ulate these pathways becomes essential. Several key 
genes are implicated in these processes. For instance, 
the BCL2(B-cell lymphoma 2) family of genes, including 
BCL2 and BAX(Bcl-2-associated X protein), are critical 
regulators of apoptosis; BCL2 inhibits apoptosis, while 
BAX promotes it [15]. TP53(Tumor Protein 53), another 
important gene, can induce apoptosis by upregulating 
pro-apoptotic genes and downregulating anti-apoptotic 
genes [16]. In the context of COPD, dysregulation of 

these genes can exacerbate epithelial cell death and tissue 
damage [17]. Regarding ferroptosis, genes such as GPX4 
(Glutathione Peroxidase 4) and SLC7A11 (Solute Car-
rier Family 7 Member 11) are essential.GPX4 prevents 
ferroptosis by reducing lipid peroxides, and SLC7A11 is 
involved in cystine uptake for glutathione synthesis, cru-
cial for defending against oxidative stress [18, 19]. These 
has become a topic of significant interest, especially in 
the fields of cancer, cardiovascular, and neuroscience 
research [20–22]. In COPD, the downregulation of GPX4 
and impaired function of SLC7A11 enhance susceptibil-
ity to ferroptosis, contributing to cell death and disease 
progression [23]. Furthermore, Nrf2 (Nuclear Factor 
Erythroid 2-Related Factor 2) and HMOX1 (Heme Oxy-
genase 1) are also significant. Nrf2 is a transcription fac-
tor that regulates the expression of antioxidant proteins, 
including those that protect against ferroptosis and apop-
tosis [24]. HMOX1, upregulated in response to oxida-
tive stress, helps degrade heme into biliverdin, iron ions, 
and carbon monoxide, reducing oxidative damage and 
preventing apoptosis and ferroptosis [25, 26]. However, 
research specifically focusing on genes that simultane-
ously regulate both apoptosis and ferroptosis in COPD 
is relatively scarce. This gap in knowledge highlights the 
need for comprehensive studies to uncover such dual-
function genes and their roles in COPD pathogenesis.

Given these insights, our study aims to perform gene 
sequencing on patients with COPD to identify genes 
involved in regulating apoptosis and ferroptosis. Fol-
lowing sequencing, we will conduct network analysis to 
elucidate the interactions between identified genes and 
validate their functional roles through targeted experi-
ments. This integrative approach will not only enhance 
our understanding of COPD mechanisms but also pave 
the way for developing targeted therapies to improve 
patient outcomes.

Materials and methods
Ethics statement
This study was approved by the Ethics Committee of the 
Shanxi Medical University (NO.2015053). Participants 
provided informed consent to participate in this study.

Patients
According to the Global Initiative for Chronic Obstruc-
tive Lung Disease (GOLD) guideline, the inclusion cri-
teria, exclusion criteria and grouping of COPD patients 
were consistent with previous studies [27]. The patients 
included in our study were recruited between Janu-
ary 1, 2015, and November 30, 2015. A total of 20 male 
COPD patients were divided into 4 groups (A, B, C and 
D, 5 patients/group). Healthy, age-matched, male smok-
ers (at least 20 packs per year of smoking history) were 
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recruited in this study, and they possessed normal lung 
function.

RNA extraction and sequencing
Peripheral blood was collected in EDTA anticoagula-
tion tubes. The method for leukocyte isolation and 
RNA extraction was consistent with previous studies 
[27]. Following the manufacturer’s protocol and meth-
ods described in earlier research [28], the steps for RNA 
sequencing were as follows:

1. RNA Isolation: Total RNA was treated with DNase I 
to remove any contaminating DNA.

2. mRNA Isolation: Magnetic beads with Oligo (dT) 
were used to isolate mRNA from the total RNA.

3. mRNA Fragmentation: The mRNA was fragmented 
into short segments using fragmentation buffer.

4. cDNA Synthesis: The fragmented mRNA served as 
templates for cDNA synthesis.

5. Fragment Purification and Treatment: The result-
ing short cDNA fragments were purified and treated 
with EB buffer for end repair and single nucleotide 
adenine addition.

6. Adapter Ligation: The fragments were then ligated 
with sequencing adapters.

7. Fragment Selection: After agarose gel electrophore-
sis, suitable fragments were selected for PCR ampli-
fication.

8. Library Preparation and Sequencing: The prepared 
library was sequenced using the Illumina HiSeqTM 
2000 platform.

RNA sequencing data analysis
Raw reads were filtered to obtain clean reads, which 
were then aligned to the reference sequences. The align-
ment data was used to calculate the distribution of reads 
on reference genes and the mapping ratio. If the align-
ment results passed quality control (QC), downstream 
analyses were conducted, including gene and isoform 
expression analysis. Additionally, we performed in-depth 
analysis based on differential gene expression (DEG), 
which included Gene Ontology (GO) enrichment analy-
sis, pathway enrichment analysis, protein–protein inter-
action (PPI) network analysis, and transcription factor 
identification.

Cell culture, cigarette smoke extract (CSE) treatment 
and transfection
The human bronchial epithelial cell line BEAS-2B was 
procured from ATCC (Manassas, VA, USA) and cultured 
in DMEM/F12 medium (Gibco, NY, USA) supplemented 

with 10% fetal bovine serum (FBS; Gibco) and 1% penicil-
lin–streptomycin (Gibco).

CSE was prepared as previously described [29] and 
used within 30  min. Smoke from a single cigarette was 
bubbled into 5 mL of serum-free DMEM/F12 medium to 
create 100% CSE. BEAS-2B cells were cultured in serum-
free DMEM/F12 medium for 2  h and then exposed to 
various concentrations of CSE for 24 h.

Following transfection with negative control (NC) 
siRNA or LCN2 siRNA (GenePharma, Shanghai, China), 
BEAS-2B cells were treated with 5% CSE for 24 h.

Quantitative Real‑Time PCR (qRT‑PCR)
Total cellular RNA was isolated from leukocytes using 
TRIzol reagent (Invitrogen) and reverse transcribed into 
cDNA according to the manufacturer’s instructions. The 
expression of some genes was conducted using RT-PCR 
primers and conditions.

Western blot
Total proteins from BEAS-2B cells were extracted, sepa-
rated by SDS-PAGE and transferred to polyvinylidene 
difluoride (PVDF) membranes. The membranes were 
blocked with 5% nonfat milk and then incubated with 
diluted primary LCN2 (1:1000, Abcam, China), glu-
tathione peroxidase 4 (GPX4; 1:1000, Abcam) or glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH; 1:1000, 
Abcam) antibody overnight at 4  °C. After incubation 
with secondary antibody (1:2000, Abcam), the protein 
blot signals were measured by BeyoECL Plus (Beyotime, 
Shanghai, China).

Apoptosis analysis
BEAS-2B cells were suspended in 500 μL binding buffer 
and incubated at room temperature in the dark for 
15 min after labeled with 5 μL Annexin V-fluorescein iso-
thiocyanate (FITC) and 5 μL propidium iodide (BD Bio-
sciences, San Jose, CA, USA). At last, the double staining 
cells were subjected to a flow cytometry (FACScan, BD 
Biosciences) to detect the apoptosis rate.

Cell viability assay
After completion of experimental treatment conditions, 
cell viability was detected by the cell counting kit-8 
(CCK-8; Beyotime). BEAS-2B cells were incubated with 
10 μL CCK-8 solution at 37 °C for 2 h and the absorbance 
at 450 nm was analyzed by a microplate reader. Cell via-
bility was normalized to relative control.

Iron content assay
Intracellular ferrous iron level was measured with the 
iron assay kit (Abcam) based on the company’s guide. 
BEAS-2B cells were homogenized with iron assay buffer, 
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and then 100 µL homogenate was incubated with 5 µL 
assay buffer at 37  °C for 30  min. Afterward, the above 
mixture was incubated with 100 µL iron probe at 37  °C 
for 60 min protected from light. At last, the optical den-
sity value at 593  nm was measured on a colorimetric 
microplate reader.

Evaluation of oxidative stress
BEAS-2B cells were incubated with 2′,7′-dichlorodihy-
drofluorescein diacetate (DCFH-DA) probe in the dark 
for 30 min, and the ROS-mediated fluorescence was ana-
lyzed under a fluorescence microplate reader or a fluo-
rescent microscope. BEAS-2B cells were homogenized 
with lysis buffer, and the supernatant was used to deter-
mine the malondialdehyde (MDA) or glutathione (GSH) 
content by the lipid peroxidation MDA assay kit (Beyo-
time) or GSH and GSSG assay kit (Beyotime) based on 
the manufacturer’s protocol.

Lactate dehydrogenase (LDH) release assay
After completion of experimental treatment conditions, 
cell culture supernatants were collected and then used to 
assess LDH release with the lactate dehydrogenase assay 
kit (Nanjing Jiancheng Bioengineering Institute, China) 
according to the instruction of assay kit.

Statistical analysis
The software of SPSS 21.0 (Chicago, IL, USA) was used 
to analyze the statistical significance. The expressed dif-
ference of selected genes between COPD patients and 
control was analyzed by Student’s t-test. The correlation 
analysis of fold change (FC) data between RNA-Seq and 
qRT-PCR was performed using Pearson correlation anal-
ysis. P value < 0.5 was considered as statistically signifi-
cant difference.

Results
Differentially expressed genes (DEGs) between COPD 
patients and control
The characteristics of enrolled 20 subjects with COPD 
(A-D groups, 5 patients/group) and 6 control subjects 
were consistent with our previous study [27]. All subjects 
were male and the mean age and the mean pack years 
of cigarette smoking history in the COPD group were 
almost similar with the control group. The gene expres-
sion levels of each sample were calculated by fragments 
per kilobase of exon model per million mapped reads 
(FPKM), and the average number of genes expressed in 
26 samples was 17,074 (Table s1). DEGs were detected by 
Possion Distribution method and Noiseq package, and 
the filter criterion was that the gene expression in at least 
one group between two groups was greater than or equal 
to 5 (≥ 5) and the absolute value of  log2FoldChange was 

greater than or equal to 0.5 (≥ 0.5). The results showed 
that 44 genes were differentially expressed between the 
two groups among 17,074 genes (Fig. 1A, Table 1).

The comparison of differentially expressed mRNAs 
among A‑D groups
Among the DEGs detected in the four groups, the 
down-regulated genes were more than the up-regulated 
genes (Fig. 1B). There were 44 interspecific genes in the 
ABCD groups, of which 17 were consistently down regu-
lated genes and 21 were consistently up-regulated genes 
(Fig.  1A, Table  1). The expression of down-regulated 
LGALS9C, LGALS9B and the up-regulated RNASEK-
C17orf49 was gradually decreased, and negatively corre-
lated with disease severity (Fig. 1C, Table 1).

Gene‑ontology (GO) and pathway‑enrichment analyses 
between COPD and control
Functional enrichment analysis was conducted on 44 dif-
ferentially expressed genes (DEGs) identified from the 
intersection of COPD and control groups using DAVID. 
Among these, one pathway was significantly enriched in 
the Kyoto Encyclopedia of Genes and Genomes (KEGG), 
with a p-value less than 0.05. Additionally, 31 terms were 
enriched in Gene Ontology (GO), comprising 17 Biologi-
cal Process (BP), 11 Cell Component (CC), and 3 Molec-
ular Function (MF) categories (Fig.  1D). KEGG analysis 
identified antigen processing and presentation as a repre-
sentative signaling pathway enriched by these genes. Fur-
thermore, DAVID analysis highlighted major GO terms 
associated with antibacterial humoral response, innate 
immune response in mucosa, extracellular space, innate 
immune response, killing of cells of other organisms, and 
extracellular exosome, among others.

Protein–protein interaction network of the DEGs
We utilized STRING to construct a protein–pro-
tein interaction (PPI) network to identify interactions 
among up-regulated, down-regulated, and inconsistently 
expressed genes/proteins from differentially expressed 
genes (DEGs). The resulting network consisted of 15 
nodes and 21 edges (Fig. 2A). In the network, red sym-
bols represent genes up-regulated in COPD patients 
compared to controls, blue symbols represent down-reg-
ulated genes, and light blue symbols represent genes with 
inconsistent expression trends. Based on the PPI scores, 
we identified the top five important genes potentially 
crucial in COPD progression: cathelicidin antimicrobial 
peptide (CAMP), defensin alpha 4 (DEFA4), elastase, 
neutrophil expressed (ELANE), lipocalin 2 (LCN2), and 
lactotransferrin (LTF). Among these, CAMP exhibited 
the highest centrality, suggesting its significant role in 
COPD pathogenesis. Conversely, heat shock protein 



Page 5 of 13Wang et al. BMC Pulmonary Medicine          (2024) 24:535  

family A (Hsp70) member 1B (HSPA1B) was prominently 
down-regulated in COPD groups.

Candidate genes in COPD patients and healthy controls
The preceding findings indicated that several key genes 
may play pivotal roles in the pathogenesis of COPD. To 
validate their significance, we conducted fluorescence 
quantitative PCR on peripheral blood samples from 
COPD patients. The results demonstrated upregulation 
of CAMP, DEFA4, ELANE, LCN2, and LTF in COPD 
patients, consistent with RNA sequencing data (Fig. 2B). 
Conversely, the expression of HSPA1B, LGALS9B, 
and LGALS9C was downregulated in COPD patients 

compared to healthy controls. These findings under-
score the potential importance of these genes in COPD 
pathophysiology.

CSE promotes apoptosis of bronchial epithelial cells 
through LCN2
Among the validated key genes mentioned above, cur-
rent research indicates that LCN2 has emerged as a 
pivotal gene of interest in COPD research due to its 
significant implications in inflammatory responses 
and immune modulation within the lung microenvi-
ronment [30–32], which has also presented in our GO 
analysis (Fig.  1D). Understanding the role of LCN2 

Fig. 1 Differentially expressed genes (DEGs) and Gene-ontology (GO) analyses. A DEGs between COPD patients and control; B DEGs among COPD 
A-D groups; C. Heatmap of gene expression; D GO and pathway-enrichment analyses between COPD and control



Page 6 of 13Wang et al. BMC Pulmonary Medicine          (2024) 24:535 

could provide crucial insights into the pathogenesis of 
COPD and potentially uncover novel therapeutic strat-
egies targeting inflammation and tissue damage in the 
lungs. In our study, we investigated the effects of ciga-
rette smoke extract (CSE) on bronchial epithelial cells, 
focusing on LCN2 expression and its consequences. 
Upon exposure to CSE, we observed a concentration-
dependent increase in LCN2 expression (Fig. 3A). This 
upregulation was effectively attenuated when LCN2 
siRNA was employed, leading to a notable decrease in 
LCN2 levels (Fig.  3B). Western blot analysis further 
confirmed the elevation of LCN2 protein levels upon 
CSE treatment (Fig.  3C). Importantly, CSE exposure 
significantly induced apoptosis of bronchial epithelial 

cells, as evidenced by experimental assays (Fig. 3D). In 
Fig.  3E, CSE treatment significantly increases apopto-
sis compared to the control, while LCN2 siRNA nota-
bly reduces this effect, suggesting LCN2 silencing 
protects against CSE-induced apoptosis. This indicates 
that CSE enhances bronchial epithelial cell apoptosis 
by upregulating LCN2 expression, and inhibiting this 
upregulation with LCN2 siRNA effectively mitigates 
the apoptosis.

CSE upregulates LCN2 expression to enhance ferroptosis 
in bronchial epithelial cells
Recent studies have also implicated LCN2 in the con-
text of ferroptosis, a form of regulated cell death char-
acterized by iron-dependent lipid peroxidation [33, 34]. 
Additionally, in our GO analysis(Fig.  1D) has identified 
enrichment in pathways related to iron ion binding, sug-
gesting LCN2’s potential involvement in iron homeosta-
sis and oxidative stress regulation. Expanding on these 
findings, we explored LCN2’s role in ferroptosis induc-
tion by CSE. Our results demonstrated that CSE expo-
sure led to notable increases in intracellular Fe2 + levels, 
reactive oxygen species (ROS) production, and malon-
dialdehyde (MDA) accumulation (Fig.  4B-D), which are 
hallmark features of ferroptosis. Additionally, CSE treat-
ment resulted in elevated lactate dehydrogenase (LDH) 
release (Fig.  4E) and a reduction in cellular glutathione 
(GSH) levels (Fig. 4F), indicative of impaired antioxidant 
defenses. Furthermore, CSE downregulated the expres-
sion of glutathione peroxidase 4 (GPX4), a key regula-
tor of ferroptosis (Fig. 4G-H). Interestingly, when LCN2 
expression was suppressed using siRNA, the aberrant 
increases in Fe2 + , ROS, MDA, and LDH release induced 
by CSE were significantly attenuated (Fig.  4B-E). More-
over, GSH levels were restored, and GPX4 expression 
returned to baseline levels (Fig. 4F-H), suggesting a pro-
tective effect against ferroptotic cell death. These findings 
underscore LCN2’s involvement in mediating ferroptosis 
and potentially regulating iron ion binding in bronchial 
epithelial cells under conditions of CSE exposure.

Discussion
The pathogenesis of COPD is multifaceted and involves 
intricate molecular mechanisms [1, 2]. Identifying bio-
markers that reflect disease activity and severity remains 
pivotal for diagnosing COPD and monitoring therapeutic 
responses. Our previous studies have employed micro-
RNA analysis to elucidate differential gene expression 
patterns in COPD patients compared to controls [27]. 
In this study, we conducted RNA sequencing to pro-
file gene expression differences between COPD patients 
and healthy controls, focusing on identifying key genes 
and pathways associated with disease severity. Our 

Table 1 The expression profiles of selected genes in ABCD 
group

A-group (low risk, less symptoms GOLD 1–2 mild or moderate airflow limitation, 
0–1 exacerbations per year, and mMRC grade 0–1 or CAT score < 10), B-group 
(low risk, more symptoms GOLD 1–2 mild or moderate airflow limitation, 0–1 
exacerbations per year, and mMRC grade ≥ 2 or CAT score ≥ 10), C-group (high 
risk, less symptoms GOLD 3–4 severe or very severe airflow limitation, and/
or ≥ 2 exacerbations per year, and/or ≥ 1 hospitalized exacerbation per year, 
and mMRC grade 0–1 or CAT score < 10), D-group (high risk, more symptoms 
GOLD 3–4 severe or very severe airflow limitation, and/or ≥ 2 exacerbations per 
year, and/or ≥ 1 hospitalized exacerbation per year, and mMRC grade ≥ 2 or CAT 
score ≥ 10)

Abbreviations: CAMP cathelicidin antimicrobial peptide, DEFA4 defensin alpha 
4, ELANE elastase, neutrophil expressed, LCN2 lipocalin 2, LTF lactotransferrin, 
RNA45S5 RNA, 45S pre-ribosomal 5, RPSAP58 ribosomal protein SA pseudogene 
58, HP haptoglobin, LGALS9B galectin 9B, LGALS9C galectin 9C, HSPA1B heat 
shock protein family A (Hsp70) member 1B, MAP3K7CL MAP3K7 C-terminal like, 
DCAF4 DDB1 and CUL4 associated factor 4, SIGLEC14 sialic acid binding Ig like 
lectin 14, RNA5-8S5 RNA, 5.8S ribosomal 5, ZNF683 zinc finger protein 683

Gene‑id Log2 ratio (cases/controls)

A B C D

CAMP 2.74 0.73 2.58 2.61

DEFA4 3.18 0.45 2.55 2.03

ELANE 2.59 0.85 2.35 2.04

LCN2 1.95 0.78 2.26 2.29

LTF 2.82 0.67 2.76 2.82

DEFA1 2.97 1.49 3.14 2.89

DEFA1B 2.18 0.53 2.60 2.22

RNASEK-C17orf49 0.93 0.55 0.52 0.42

RNA45S5 3.02 2.10 2.51 0.84

RPSAP58 1.91 4.09 4.27 2.44

HP 3.24 2.52 2.69 0.79

LGALS9B -1.12 -1.03 -0.92 -0.79

LGALS9C -0.91 -0.64 -0.58 -0.44

HSPA1B -0.71 -0.60 -0.62 -1.25

MAP3K7CL -1.61 -0.44 -1.08 -0.98

DCAF4 -0.79 -0.79 -1.15 -0.62

SIGLEC14 -2.03 -0.93 -0.61 -0.81

RNA5-8S5 -2.49 -1.74 -1.28 -1.34

ZNF683 -0.47 -1.72 -0.51 -0.76
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investigation highlighted several significant findings, 
particularly regarding the role of LCN2 in bronchial epi-
thelial cells, including its involvement in apoptosis and 
ferroptosis pathways.

We initially identified 44 significant genes associated 
with COPD severity, including 21 commonly upregulated 
and 17 downregulated genes. Notably, downregulation 
of LGALS9C and LGALS9B, along with upregulation 
of RNASEK-C17orf49, correlated negatively with dis-
ease severity. In humans, Galectin-9 (Gal-9) is encoded 
by the LGALS9 gene located on chromosome 17q12. 
The LGALS9 gene has two splice variants that pro-
duce different isoforms of Galectin-9: LGALS9B (short 
arm) and LGALS9C (long arm) [35]. These isoforms 
exhibit distinct structural characteristics and may have 

different functions, although their precise roles in vari-
ous physiological and pathological conditions are still 
under investigation [35–37]. In our study, we observed 
a gradual decrease in the expression levels of LGALS9B 
and LGALS9C with increasing severity of COPD, and 
we found these genes involved in carbohydrate binding 
according to GO analysis. Horio et al. [38] demonstrated 
that Gal-9 can mitigate PPE-induced inflammation and 
emphysema in mice by reducing neutrophil infiltration 
and MMP-9 production, suggesting Gal-9 as a potential 
therapeutic agent for pulmonary emphysema and COPD.

Utilizing KEGG and GO analyses, as well as construct-
ing a protein–protein interaction network, we identified 
six candidate genes among the differentially expressed 
genes (DEGs). Specifically, five genes (CAMP, DEFA4, 

Fig. 2 Protein–protein interaction network of the DEGs and Candidate genes in COPD. A Protein–protein interaction network of the DEGs; B The 
qPCR results of candidate genes *P < 0.05
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Fig. 3 CSE promotes apoptosis of bronchial epithelial cells through LCN2. A Expression levels of LCN2 varied with different concentrations of CSE. 
B QPCR analysis of LCN2 levels in BEAS-2B cells transfected with NC, CSE, CSE + LCN2siRNA, and CSE + NCsiRNA. C Western blot analysis of LCN2. D 
Assessment of cell apoptosis in BEAS-2B cells transfected with NC, CSE, CSE + LCN2siRNA, and CSE + NCsiRNA. E The apoptosis rate was detected 
by Flow cytometry in different groups (*P < 0.05)
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ELANE, LCN2, and LTF) exhibited significant upregu-
lation, highlighting their roles in extracellular space 
dynamics and innate immune responses. Conversely, 
HSPA1B, as one of SNPs in HSP genes, implicated in 

antigen processing, gene expression regulation, and 
blood microparticle pathways, demonstrated down-
regulation in COPD. This finding aligns with previ-
ous research, which has extensively explored the role of 

Fig. 4 CSE upregulates LCN2 expression to enhance ferroptosis in bronchial epithelial cells. A BEAS-2B cell viability was assessed by incubating cells 
with 10 μL CCK-8 solution. B Fe2 + levels in BEAS-2B cells transfected with NC, CSE, CSE + NCsiRNA and CSE + LCN2siRNA. C ROS levels in BEAS-2B 
cells transfected with NC, CSE, CSE + NCsiRNA and CSE + LCN2siRNA. D MDA accumulation levels in BEAS-2B cells transfected with NC, CSE, 
CSE + NCsiRNA and CSE + LCN2siRNA. E LDH leves in BEAS-2B cells transfected with NC, CSE, CSE + NCsiRNA and CSE + LCN2siRNA. F GSH levels 
in BEAS-2B cells transfected with NC, CSE, CSE + NCsiRNA and CSE + LCN2siRNA. G QPCR analysis of GPX4 levels. H Western blot analysis of GPX4 
(*P < 0.05)
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HSP genes in COPD. Specifically, all SNPs in HSP genes 
is associated with the risk of COPD and severe forms 
of the disease [39]. Similarly, the other upregulated five 
genes we identified have also been the subject of pre-
liminary research in the context of COPD. For example, 
CAMP is a series of evolutionarily conserved molecules 
and are produced mainly by mucosal epithelial cells or 
phagocytes and are critically important components 
of respiratory innate immunity [40]. And it may poten-
tially identify COPD patients at increased risk for more 
severe lung disease [41]. Paone et al. [42] found that spu-
tum DEFA levels were also significantly higher in COPD 
patients with severe airway obstruction as compared to 
individuals with mild to moderate functional impairment 
and with symptomatic smokers and indicated DEFA con-
centrations correlate with the degree of airway obstruc-
tion. In addition, recent study confirmed PBMC ELANE 
expression of mRNA was significantly higher in COPD 
patients and an obvious negative correlation between NE 
and FEV1 in COPD patients [43]. LTF in COPD mainly 
focused on its antibacterial and anti-inflammatory 
activity [44, 45]. Elevated LCN2 promoted COPD air-
way remodeling, might be a potential target for revers-
ing airway obstruction and remodeling in COPD [46], 
and a positive relationship with symptoms in patients 
with COPD [47]. These five important elevated genes 
are commonly associated with immune responses and 
might relate to the severity of lung function. Based on 
the pathways in which these genes participate, we specu-
late that they may be involved in resistance to bacteria, 
viruses, and immune response. As the disease progresses, 
the immune damage and inflammation mediated by exo-
some signals become more pronounced. Among these 
upregulated genes, LCN2 stands out due to its involve-
ment in several crucial biological processes as revealed 
by GO analysis. Specifically, LCN2 is implicated in iron 
ion binding, response to oxidative stress, and regulation 
of apoptosis. The significance of LCN2’s role is further 
highlighted by its potential involvement in both apop-
tosis and ferroptosis, two key forms of cell death that 
contribute to COPD pathogenesis. Apoptosis, a form of 
programmed cell death, and ferroptosis, a form of iron-
dependent cell death characterized by the accumulation 
of lipid peroxides, are both implicated in the inflamma-
tory and oxidative stress responses observed in COPD [4, 
5]. Given these associations, studying LCN2 in the con-
text of apoptosis and ferroptosis could provide critical 
insights into the mechanisms driving COPD progression. 
Therefore, understanding LCN2’s role in these pathways 
might reveal new therapeutic targets and strategies for 
managing COPD.

To further explore the function of LCN2 in COPD, we 
conducted in vitro experiments with bronchial epithelial 

cells. Our findings showed that CSE induced LCN2 
expression and enhanced cell apoptosis and ferroptosis. 
After downregulating LCN2 expression, CSE-induced 
cell apoptosis and ferroptosis were significantly reduced. 
This indicates that CSE increases apoptosis and ferrop-
tosis in bronchial epithelial cells by promoting LCN2 
expression, thereby contributing to the progression of 
COPD. We specifically selected bronchial epithelial 
cells for this study because they play a crucial role in the 
pathophysiology of COPD. As the first line of defense 
in the respiratory tract, these cells are directly exposed 
to inhaled harmful substances, such as cigarette smoke 
[4]. These harmful substances trigger inflammation and 
oxidative stress responses in bronchial epithelial cells, 
leading to apoptosis and ferroptosis, which subsequently 
cause pathological damage and functional impairment in 
lung tissues [7, 11, 12]. Studying bronchial epithelial cells 
allows us to observe the direct responses and changes 
in these critical cells during the development of COPD. 
Their unique role in lung defense and repair mechanisms 
makes them an ideal model to understand how LCN2 
influences COPD progression through the regulation of 
apoptosis and ferroptosis. LCN2, known as neutrophil 
gelatinase-associated lipocalin, is an acute-phase pro-
tein secreted by immune and epithelial cells in various 
mucosal tissues, playing a crucial role in lung inflam-
mation and iron homeostasis, and serving as a potential 
diagnostic biomarker for lung diseases [32]. Although 
there is limited research on the function of LCN2 in 
COPD, extensive studies have been conducted on its 
role in other lung diseases. Endogenous LCN2, but not 
exogenous LCN2, triggers NiCl2-mediated autophagy 
and apoptosis in bronchial epithelial cells [48]. Wang 
et al. [49] showed that LCN2 expression was significantly 
upregulated in newborn mice with acute respiratory dis-
tress syndrome (ARDS); LCN2 knockdown inhibited the 
MAPK/ERK pathway, thereby reducing the inflamma-
tion and oxidative stress associated with ferroptosis, and 
improving the pathological damage of lungs and cells. 
Zhang et al. [50] further pointed out that lipopolysaccha-
ride (LPS) promoted the expression of LCN2 in BEAS-
2B cells, while the ferroptosis inhibitor Ferrostatin-1 
reversed the expression of LCN2; LCN2 knockdown 
reversed abnormal changes in LPS-induced lipid peroxi-
dation, Fe2 + , ACSL4, and GPX4 levels, indicating that 
LCN2 is an important gene associated with ferroptosis. 
Therefore, LCN2 is of great significance in pulmonary 
diseases such as COPD and can promote pathological 
progression through ferroptosis.

Several limitations should be considered when inter-
preting the findings of this study. Firstly, while peripheral 
blood leukocyte RNA profiles provide systemic insights, 
they may not fully capture the specific molecular changes 
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in COPD-affected lung tissues. Future research using 
lung tissue samples could offer more direct insights into 
disease pathogenesis. Due to difficulties in obtaining 
lung tissue samples, studies often rely on more acces-
sible and less invasive peripheral blood samples from 
patients with COPD. Secondly, the in vitro model using 
bronchial epithelial cells exposed to CSE provides con-
trolled conditions but lacks the complexity of the in vivo 
lung environment, potentially limiting its relevance to 
disease mechanisms involving interactions with other 
lung cell types and the microenvironment. Thirdly, the 
cross-sectional study design restricts the ability to estab-
lish causal relationships between LCN2 expression and 
COPD progression. Longitudinal studies are needed to 
explore the temporal dynamics of LCN2 expression in 
COPD. Moreover, while this study implicates LCN2 in 
apoptosis and ferroptosis pathways in COPD, the specific 
molecular mechanisms through which LCN2 exerts these 
effects remain inadequately discussed. Further detailed 
mechanistic studies are warranted to elucidate the pre-
cise roles and regulatory pathways of LCN2 in COPD 
pathophysiology.

Conclusion
In brief, our study identified differentially expressed 
genes between COPD patients and healthy controls 
using RNA-Seq analysis. KEGG, GO, and protein–pro-
tein interaction analyses highlighted six candidate genes. 
Among these, CAMP, DEFA4, ELANE, LCN2, and LTF 
were upregulated, while HSPA1B was downregulated. 
Notably, LCN2 is linked to apoptosis and ferroptosis, 
making it a potential target for COPD treatment. Fur-
ther mechanistic studies are needed to explore these 
pathways.
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