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Abstract

Background There is a general rise in incidentally found pulmonary nodules (PNs) requiring follow-up due to
increased CT use. Biopsy and repeated CT scan are the most useful methods for distinguishing between benign PNs
and lung cancer, while they are either invasive or involves radiation exposure. Therefore, there has been increasing
interest in the analysis of exhaled volatile organic compounds (VOCs) to distinguish between benign PNs and lung
cancer because it's cheap, noninvasive, efficient, and easy-to-use. However, the exact value of breath analysis in this
regard remains unclear.

Methods A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic
search was performed to include studies that established exhaled VOC-based predictive models to distinguish
between benign PNs and lung cancer and reported the exact VOCs used. Data regarding study characteristics,
performance of the models, which predictors were incorporated, and methodologies for breath collection and
analysis were independently extracted by two researchers. The exhaled VOCs incorporated into the predictive
models were narratively synthesized, and those compounds that were reported in > 2 studies and reportedly
exhibited consistent associations with lung cancer were considered key breath biomarkers. A quality assessment
was independently performed by two researchers using both the Newcastle-Ottawa Scale (NOS) and the Prediction
Model Risk of Bias Assessment Tool (PROBAST).

Results A total of 11 articles reporting on 46 VOC-based predictive models were included. The majority relied
solely on exhaled VOCs (n=44), while two incorporated VOCs, demographical factors, and radiological signs. The
variation in the sensitivity, specificity, and AUC indicators of the models that incorporated multiple factors was
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information.

lower compared with those of the models that relied solely on exhaled VOCs. A total of 84 VOCs were incorporated.
Of these, 2-butanone, 3-hydroxy-2-butanone, and 2-hydroxyacetaldehyde were identified as key predictors that
had significantly higher concentrations in the exhaled breath samples of patients with lung cancer. Substantial
heterogeneity was observed in terms of the modeling and validation methods used, as well as the approaches to
breath collection and analysis. Many of the reports were missing certain key pieces of clinical and methodological

Conclusions Although exhaled VOC-based models for predicting cancer risk might be a conceivable role as
monitoring tools for PNs risk, there has been little overall change in the accuracy of these tests over time, and their
role in routine clinical practice has not yet been established.

Clinical trial number PROSPERO registration number CRD42023381458.
Keywords Pulmonary nodules, Lung cancer, Volatile organic compounds, Breath biomarkers, Systematic review

Introduction
Lung cancer is the second most common cancer and the
leading cause of cancer-related deaths worldwide [1, 2].
Approximately half of patients with lung cancer are diag-
nosed at an advanced stage, missing the optimal treat-
ment window. This contributes significantly to the high
mortality rate associated with the malignancy [3]. There-
fore, the early detection and diagnosis of lung cancer are
of great significance to both clinical practice and general
public health. Chest radiography and sputum cytology
have been used for lung cancer screening since the 1970s.
However, the sensitivity levels of these modalities are low
[4, 5]. Over the past several decades, the US National
Lung Cancer Screening Trial (NLST) and several other
trials in Europe have demonstrated that low-dose com-
puted tomography (LDCT) scan effectively reduces lung
cancer mortality by facilitating earlier-stage diagnoses
[6-9]. There is a general rise in incidentally found pulmo-
nary nodules (PNs) requiring follow-up due to increased
CT use [10]. However, only a small fraction of these
nodules are actually lung cancer [11-14]. Therefore, it is
essential to develop efficient and easy-to-use techniques
for distinguishing between benign PNs and lung cancer,
as this is crucial for guiding clinical decision-making.

Breath analysis, a simple and noninvasive approach,
has shown great potential in diagnosing various pulmo-
nary diseases [15]. Breath is a rich medium comprising
gas-phase organic and inorganic compounds, as well
as aerosols [16]. In the gas phase, there are hundreds of
volatile organic compounds (VOCs) of diverse chemi-
cal natures that may be present in trace quantities [16].
Although no specific compounds have been identified
whose presence or absence in exhaled breath can reliably
indicate lung cancer to date, various prediction mod-
els based on exhaled VOCs can accurately classify lung
cancer patients and healthy volunteers [17-19]. How-
ever, the value of breath analysis to distinguish between
benign PNs and lung cancer remains unclear.

Published studies on predictive models for distin-
guishing between benign PNs and lung cancer based on

exhaled VOCs have reported conflicting results. First,
there is some inconsistency regarding the types and
quantities of breath biomarkers incorporated into the
models. For example, Peled et al. first developed a diag-
nostic model based on a single compound (1-octene)
to distinguish patients with benign vs. malignant PN,
in their prospective trial [20]. By contrast, a team from
the University of Louisville developed PN predictive
models by incorporating four compounds: 2-butanone,
3-hydroxy-2-butanone, 2-hydroxyacetaldehyde, and
4-hydroxy-2-hexenal [21-23]. Based on these studies,
researchers from Zhejiang University established pre-
dictive models by incorporating 19 VOCs to distinguish
between benign PNs and lung cancer [24]. It is worth
noting that diagnosing lung cancer using a single VOC is
challenging, highlighting the importance of incorporat-
ing multiple VOCs to conduct more accurate predictions
[25, 26]. Second, the performance metrics of existing
models have been inconsistent. Two clinical studies have
demonstrated that exhaled VOCs can be used to distin-
guish lung cancers confirmed by biopsy analysis from
suspicious PNs observed on repeated LDCT, with high
sensitivity and acceptable specificity [23, 27]. However,
Liao et al. found that predictive models based solely on
exhaled VOCs are not sufficient to accurately identify
patients with lung cancer and those with benign PNs and
reported that the performance of those models must be
improved by combining them with additional factors
such as demographic characteristics and radiological
findings [28].

This review summarizes the current knowledge regard-
ing exhaled VOC-based predictive models for distin-
guishing between benign PNs and lung cancer and
assesses the overall value of these models in this regard.

Methods

This systematic review was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) reporting checklist [29].
The protocol was registered with the International
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Prospective Register of Systematic Reviews (PROSPERO)
(registration number CRD42023381458).

Search strategy

A PRISMA-oriented systematic search was performed
in PubMed, Embase, Web of Science, Cochrane Library,
the Chinese National Knowledge Infrastructure (CNKI),
China Biology Medicine disc (CBM), Wanfang, and
CQVIP. We initially searched databases from their incep-
tions until 23 July 2022, with an update on 30 September
2023. The search was conducted through the combina-
tion of the Medical Subject Headings (MeSH) terms and
keywords ‘lung neoplasms’ ‘lung cancer’ ‘multiple pul-
monary nodules’ ‘solitary pulmonary nodule’ ‘volatile
organic compounds’ ‘breath’ and ‘exhaled’ A list of the
detailed search strategy used is described in the Appen-
dix 1.

Inclusion and exclusion criteria
We included studies that reported on the development
and validation of exhaled VOC-based risk-predictive
models to distinguish between benign PNs and lung
cancer. Studies were included if they were conducted in
patients with LC confirmed via biopsy analysis, as well as
in patients with benign PNs confirmed via biopsy analy-
sis or detected by repeated radiological scans [30]. The
included studies needed to identify and report specifi-
cally which VOC biomarkers were used. The predictors
incorporated into the models were permitted to have
been either exhaled VOCs alone or combined with other
factors such as demographic characteristics and radio-
logical signs. Articles published in English or Chinese
were included, without any restrictions on study design.
Studies that analyzed exogenous VOCs or compounds
in breath condensate and biofluids such as serum, urine,
feces, and gastric content were excluded. Studies were
also excluded if they were not carried out in humans
or were not relevant to distinguishing between benign
PNs and lung cancer. Studies limited to identifying risk
predictors, reviews, letters, comments, and conference
abstracts were also excluded.

Study selection

The electronic reports identified were imported into the
reference manager Endnote and duplicates removed.
Screening title and abstract of studies identified was
performed by two researchers (ZXS and GYL) indepen-
dently, and then full texts were reviewed to determine
eligibility for inclusion. During this procedure, poten-
tial studies from the reference lists of original articles
on this issue were screened and reviewed thoroughly for
eligibility.
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Data extraction and analysis

A pre-defined table was designed to extract the vari-
ables through a panel discussion with experts and epi-
demiologists. Information was extracted from each
study includes: (1) the characteristics of study (title, first
author, publication year, study country, study design,
and study participants); (2) the characteristics of predic-
tion models (candidate variables of the models, variables
incorporated into the models, statistical method, model-
ing method, internal validation, external validation, sen-
sitivity, specificity, accuracy, and area under the receiver
operating characteristics (ROC) curves); (3) detailed
methodologies (breath test environments, patient physi-
ological conditions, sample collection methods, and
VOC analysis and identification). Data extraction was
independently performed by two researchers (ZXS and
GYL). When encountering disagreements, our research
team would discuss the article and reach a consistent
agreement.

Quality assessment

The adapted Newcastle-Ottawa Scale (aNOS) used as a
tool for risk of bias assessment of the included articles
(Appendix 2) [31]. Moreover, the models’ applicability to
the intended population and setting were assessed by the
Prediction Model Risk of Bias Assessment Tool (PRO-
BAST) (Appendix 3) [32, 33]. Two researchers conducted
a critical appraisal of the studies, with any disagreements
re-solved through consensus.

Results

Characteristics of the included studies

A total of 2,288 studies were identified. Among them,
2,240 were published in English, while 48 were in Chi-
nese. In addition, five additional studies have been pre-
liminary added according to their titles through other
sources, including reference and website [28, 34-37].
After removing 1303 duplicates, a total of 990 studies
underwent title and abstract screening, before 450 stud-
ies were screened for full-text. A total of 439 studies were
excluded for various reasons, as outlined in Appendix 8.
Our final analysis included 11 studies (Fig. 1 and Appen-
dix 7). These studies reported 46 VOC-based predictive
models that had been used to distinguish a total of 597
patients with benign PNs from 1,700 patients with lung
cancer. The number of participants involved in establish-
ing the predictive models ranged between 72 and 768
per study. Of the 11 total studies, seven (63.64%) were
conducted in the US and four (36.36%) were carried out
in China. Nine (81.82%) were cross-sectional studies,
one was a prospective trial, and one was a cohort study.
The characteristics of the included studies are listed in
Table 1.
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Records excluded by titles and

abstracts (n = 540)

Reports excluded (n = 248):
Exhaled breath condensate or
other biofluid (n = 18)
Not relevant to screening,
diagnosis or assessment of lung

diseases (n = 56)

Not carried in humans (n= 5)
No VOC identification (n = 95)
Review, letter, comment and

A 4

conference abstract (n =45)
Exogenous VOCs (n = 8)

Not in English or Chinese (n = 3)
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pulmonary nodules (n = 184)
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Fig. 1 Selection process of PRISMA flow diagram

Breath collection and analysis methods

The most commonly used methodology for collect-
ing exhaled breath involved the use of Tedlar bags (#=8
studies, 72.73%), although the sample volume ranged
between 450 and 1,000 mL. All of the studies used MS-
based techniques such as gas chromatography-mass
spectrometry (GC-MS; n=5, 45.45%), Fourier-transform
ion cyclotron resonance mass spectrometry (FT-ICR-
MS; n=5, 45.45%), and high-pressure photon ionization
time-of-flight mass spectrometry (HPPI-TOFMS; n=1,
9.1%). Notably, solid-phase microextraction (SPME; n=3,
27.27%) and thermal desorption (TD; n=2, 18.18%) were
the most frequently used methods for pre-concentrating
the samples. Regarding the identification of the chemi-
cal structures of the VOCs, four of the studies (36.36%)
referred to the National Institute of Standards and Tech-
nology Library (NIST), while two (18.18%) relied on MS
techniques and retention times.

The factors that influenced exhaled VOC concentra-
tions were divided into three categories: breath test envi-
ronments, patient physiological conditions, and breath
collection and analysis methods. A total of seven stud-
ies (63.64%) described their breath test environments,
while seven (63.64%) focused on the physiological condi-
tions of the patients analyzed. All of the included studies
discussed their breath collection and analysis methods.
Detailed information regarding these factors is presented
in Table 2.

Incorporated predictors

The number of predictors incorporated into the mod-
els ranged between 1 and 35 (Table 3). Out of 46 total
predictive models, 44 (95.64%) were solely based on
VOC biomarkers. Only one model (2.18%) incorpo-
rated both VOC biomarkers and patient ages. Another
model (2.18%) considered VOC biomarkers, age, and
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radiological signs (including nodule size, count, type, and
spiculation).

A total of 84 VOCs were incorporated into the predic-
tive models. The most commonly reported VOCs were
2-hydroxyacetaldehyde (n=5 studies), 2-butanone (n=4),
3-hydroxy-2-butanone (n=4), and butyric acid (n=3).
Among these VOCs, the concentrations of 2-hydroxyac-
etaldehyde, 2-butanone, and 3-hydroxy-2-butanone were
reported to have been significantly higher in the exhaled
breath samples of patients with lung cancer. The associa-
tions between butyric acid concentration and lung can-
cer were not reported among any of the included studies.
Table 4 presents a comprehensive summary of all of the
VOCs that were reported on in >2 of the studies. The
VOC:s that were reported on in only one study are listed
in Appendix 4, along with their chemical classes and CAS
registry numbers.

Modeling methods

Table 3 presents detailed information regarding the mod-
eling methods used in the included studies. The most
commonly used modeling methods were machine learn-
ing—which included support vector machine classifica-
tion models (n=9, 19.57%), logistic regression analysis
(n=6, 13.04%), random forest algorithm (n=3, 6.52%),
discriminant analysis (n=3, 6.52%), artificial neural net-
work (n=2, 4.35%), and partial least squares analysis
(n=1, 2.17%). The statistical modeling methods used for
22 of the models (47.83%) were unclear.

Predictive performance

Each study included in our analysis reported at least one
measure of predictive performance (Table 3). Nine of the
studies reported classification measures of 20 predictive
models. Of these, the sensitivity and specificity values of
nine of the models (45%) were reported to both be >70%.
Six of the studies reported index of prediction accuracy
values that ranged between 54.15% and 94.6%. Eight of
the studies assessed discrimination using AUC values,
which ranged between 0.625 and 0.986. Notably, none of
the studies reported on calibration measures.

The variation in terms of sensitivity, specificity, and
AUC values of the models that incorporated multiple fac-
tors was lower compared with those of the models that
were based solely on exhaled VOCs. Among the mod-
els based solely on exhaled VOC biomarkers, the model
with the highest sensitivity (100%) exhibited a specific-
ity of 81.8%—while the model with the highest specific-
ity (100%) showed a sensitivity of 28%. When exhaled
VOC biomarkers were combined with other factors, the
model with the highest sensitivity (80.80%) had a speci-
ficity of 60.50%, while the model with the highest speci-
ficity (68.3%) had a sensitivity of 78.7%. The models
based solely on exhaled VOCs had AUC values ranging
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between 0.625 and 0.986, while those that incorporated
additional factors such as age and radiological signs
maintained stable AUC values of 0.776—0.781.

Validation approaches

Out of the 46 developed models, 19 (41.3%) exclusively
underwent internal validation using methods such as
K-fold cross-validation (=13, 28.3%), leave-group-out
cross-validation (LGOCV; n=5, 10.9%), and leave-one-
out cross-validation (LOOCYV; n=1, 2.2%). Two of the
models (4.3%) were internally validated through K-fold
cross-validation before being subjected to blinded vali-
dation at two independent laboratories. Only one study
validated two models (4.3%) using a new patient sample.

Study quality assessment

The aNOS scores of the included studies ranged between
6 and 9 (Appendix 5). Of the 11 total studies, five were
rated very good, five were rated good, and one was rated
satisfactory. The one study that received satisfactory rat-
ings did not report on the representativeness levels of
their patient samples.

The PROBAST tool was used to evaluate the risk of
bias associated with the included studies. As shown in
Fig. 2 and Appendix 6, all were found to have a high risk
of bias in terms of participants, predictors, analysis, and
overall domains. This high risk of bias may be attributable
to the inappropriate inclusion criteria or small sample
sizes of the studies. Predictors were also evaluated based
on outcome information, and the selection of predictors
using univariable analysis was done without reporting on
measures of discrimination or calibration for model per-
formance. Furthermore, the risk of bias in the outcome
domains was unclear for all 11 of the included studies.

In terms of the applicability of the models, nine of the
studies had low risks of bias in the participant domain,
whereas two had unclear risks of bias. All of the models
developed had unclear risks of bias in the predictors, out-
comes, and overall domains.

Discussion

This systematic review assessed the performance of
46 predictive models for lung cancer, based on VOCs
detected in exhaled breath samples, reported in 11 stud-
ies and involving a total of 2,297 patients. Although the
findings indicated that there was significant heteroge-
neity in the predictive performances of the models in
terms of distinguishing between benign PNs and lung
cancer, the models that incorporated additional factors
such as demographic characteristics and radiological
signs showed better performance metrics. Several com-
pounds—including 2-butanone, 3-hydroxy-2-butanone,
and 2-hydroxyacetaldehyde—were identified as being
the most significant VOCs for distinguishing between
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benign PNs and lung cancer. Despite the potential of
VOC breath analysis, there has been little overall change
in the accuracy of these tests over time, and their role in
routine clinical practice requires further research to be
established.

Although the concentrations of exhaled 2-butanone,
3-hydroxy-2-butanone, and 2-hydroxyacetaldehyde have
been identified as significant biomarkers for distinguish-
ing between benign pulmonary nodules (PNs) and lung
cancer, the endogenous origins of these volatile organic
compounds (VOCs) remain largely unknown or specu-
lative. In lung cancer patients, elevated levels of ketones
have been observed, which may result from fatty acid oxi-
dation known to increase the production of 2-butanone
[38, 39]. A previous study has demonstrated that exhaled
3-hydroxy-2-butanone is likely an endogenous prod-
uct resulting from the degradation of 2-butanone [40].
Similar research in rodents has shown that 2-butanone
is oxidatively metabolized to 3-hydroxy-2-butanone,
presumably by cytochrome P-450-dependent monooxy-
genases [41, 42]. Additionally, 3-hydroxy-2-butanone is
produced during the detoxification of acetaldehyde and
may participate in pulmonary redox cycling, potentially
generating toxic reactive oxygen species (ROS) that can
damage lung tissue [43—-45]. Endogenous 2-hydroxy-
acetaldehyde is formed through the oxidative degrada-
tion of glucose, as well as from glycated proteins, lipid
peroxidation, and the oxidation of amino acids [46].
This compound, produced by human neutrophils dur-
ing phagocytosis, can be a potential source of ROS and
may play an important role in tumor development and
progression [46]. It is also important to note that exhaled
isoprene has been identified as a marker for lung cancers
[47]. Initially, it was believed to originate from hepatic
cholesterogenesis; however, recent study has revealed
that exhaled isoprene originates from muscular lipolytic
cholesterol metabolism, as determined by the IDI2 gene
[48]. Therefore, further research is needed to uncover the
human metabolic origins of endogenous VOCs in lung
cancer to promote clinical validation for diagnosis.

Our literature review indicated that, in addition
to VOCs alone, incorporating multiple factors, such
as patient characteristics and radiological signs, can
greatly improve the stability of predictive models based
on breath samples. Although the majority of the stud-
ies included in this review established predictive mod-
els based solely on exhaled VOCs, two of the ones that
exhibited superior levels of performance also incorpo-
rated patient ages and radiological signs [28, 49]. When
considering additional factors, variables such as age and
smoking status should be considered first, as these rep-
resent known predictors of lung cancer risk [50, 51].
Furthermore, researchers have shown that diagnosing
lung cancer using a single VOC is challenging and that
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incorporating several VOCs may be necessary to enhance
the performance of such predictive models [25, 26].
However, including too many variables may increase the
risk of model overfitting and spurious relationships [52].
Without proper statistical corrections, spurious correla-
tions can be found even in entirely nonsensical contexts,
referred to as Voodoo correlations [53]. This issue is fur-
ther exacerbated by a relatively small sample size, which
reduces the power of statistical tests and increases the
likelihood of false positives. Therefore, well-established
techniques such as the Bonferroni correction or False
Discovery Rate (FDR) control that can and should be
used for the reducing the likelihood of spurious correla-
tions [54, 55].

Performance of predictive models varied significantly
depending on the algorithm of machine learning. The
main application field of logistic regression (LR) and sup-
port vector machine (SVM) is binary classification which
makes these algorithms attractive to solve these clinical
tasks [56, 57]. Xie SH, Liao PQ, and Chen X et al. uti-
lized LR algorithm to develop predictive models based
on exhaled VOCs to distinguish between benign PNs
and lung cancer [24, 28, 49]. The predictive performance
was almost the same for these models, with acceptable
AUC values. Rai et al. trained SVM to establish their rel-
evance in lung cancer patients’ classification which also
achieved an acceptable accuracy [58]. The Random for-
est (RF) algorithm is more flexible because it can iden-
tify a broader scope of possible relationships between
the model predictors and the disease status [59]. For
example, Ding, X, et al. demonstrated the efficacy of the
RF models based 16 exhaled VOCs for discriminating
lung cancer from benign PNs [60]. In addition, validation
approaches also varied widely between studies, includ-
ing K-fold cross-validation [24, 28, 58] leave-group-out
cross-validation [61], and leave-one-out cross-validation
[20], which makes replication of results between studies
difficult.

Our review further highlighted that sample collection
and measurement techniques are hard to rationalize in
clinical perspective. Many researchers have optimized
method of exhaled breath analysis before the study of
real subjects, but the results are varied. For example,
some studies have required participants to fast for 6-12 h
before breath collection [24, 28, 49], while Li MX. et al.
conducted in patients without any diet controls [61]. In
addition, some researchers have utilized Tedlar bags,
Mylar bags [20-23, 61], and Bio-VOC breath samplers
[49, 62] to collect breath samples. While others preferred
portable breath sample collection devices or self-made
collection devices [63, 64]. Only the end-tidal phase of a
breath represents systemic concentrations of VOCs [65],
while the lack of alveolar sampling in the included studies
is biased via various confounding effects [21-23, 58, 60,
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Table 4 \olatile organic compounds reported in at least two studies

Compound name Frequency Level of VOCs Chemical Classes CAS

LC> BPN BPN> LC
2-hydroxyacetaldehyde 5 Yes Aldehydes 141-46-8
4-hydroxyhexenal 2 Yes Aldehydes 109710-37-4
Acrolein 2 Yes Aldehydes 107-02-8
4-hydroxy-2-nonenal 2 Yes Aldehydes 75899-68-2
Acetaldehyde 2 NR NR Aldehydes 141-46-8
4-hydroxyhexanal 2 Yes Aldehydes 109710-36-3
Heptanal 2 NR NR Aldehydes 111-71-7
Hexanal 2 Yes Aldehydes 66-25-1
Octanal 2 Yes Aldehydes 124-13-0
2-butanone 4 Yes Ketones 78-93-3
3-hydroxy-2-butanone 4 Yes Ketones 513-86-0
Butyric acid 3 NR NR Acids 107-92-6
Acetic Acid 2 NR NR Acids 64-19-7
Propylcyclohexane 2 NR NR Alkanes 1678-92-8
Benzene 2 NR NR Aromatic compounds 71-43-2
Tetrachloroethylene 2 NR NR Haloalkanes 127-18-4

NR: Not Reported; CAS: Chemical abstracts service; LC: lung cancer; BPN: benign pulmonary nodules

Participants

Predictors

Analysis

Risk of bias

Outcome ‘

0% 25% 50% 75%

‘ |:| High risk of bias |:| Some concerns . Low risk of bias

100%

Fig. 2 Risk of bias and applicability assessment according to the PROBAST

61]. Physio-metabolic and analytical confounders are to
be minimized to realize actual pathophysiological effects
on exhaled VOC concentrations [66]. Therefore, to stan-
dardize the procedure for exhaled breath analysis, expert
opinions can be gathered through various methods, such
as the Delphi process [67].

MS-based techniques are generally considered the gold
standard for analyzing VOCs, owing to their ability to
determine the molecular masses and possible chemical
structures of individual VOCs [68]. However, this tech-
nique is subject to certain limitations. First, the analysis
of VOC biomarkers using MS-based techniques requires
pre-concentration and a high level of expertise, mak-
ing them too expensive and complex for many clinical
application [69, 70]. Moreover, pre-concentration meth-
ods may selectively enhance the signals of certain VOCs
while simultaneously leading to the loss of others [20].
Second, breath samples are recommended to be analyzed
within six hours of collection to best preserve sample
compositions [71]. However, it is important to consider

penctpens _

Predictors

Outcome

Applicability

0% 25%

50% 75% 100%

that background pollutants from the sampling equipment
may potentially alter breath sample compositions as well
[71, 72]. From a clinical perspective, clinicians are more
interested in identifying “treatable traits” by stratify-
ing patients based on clinically relevant qualities such as
diagnosis, prognosis, and treatment response [73, 74]. In
this scenario, simpler more cost-effective techniques have
been considered and developed, such as the electronic
nose (or “e-nose”) [75]. Many researchers have concluded
that e-noses have the potential to become promising
diagnostic tools in everyday clinical practices [76, 77].
Although existing VOC-based predictive models have
shown acceptable levels of performance for distinguish-
ing between benign PNs and lung cancer, the majority of
the existing predictive models for distinguishing between
benign PNs and lung cancer have not undergone valida-
tion, which hinders their clinical implementation. Ide-
ally, external validations of VOC-based predictive models
should be performed in large observational cohorts
that have been carefully designed to be accurately
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representative of real-world patients with benign PNs
and lung cancer [78]. To better inform clinical practices,
future studies should carefully consider the heterogene-
ity of prediction effects and conduct model validations to
develop predictive models that are of value to clinicians.

Limitations

This review summarized the current knowledge on
exhaled VOC-based predictive models for distinguish-
ing between benign PNs and lung cancer. However, it
was subject to certain limitations worth noting. First,
there was substantial heterogeneity among the included
studies in terms of the methods used for their establish-
ment, as well as for patient breath sample collection and
analysis. Consequently, no quantitative meta-analysis has
been conducted on the results of the studies. Second, all
of the included studies were found to have a high risk of
bias, likely caused by inappropriate inclusion criteria, the
selection of predictors using univariate analyses, or a lack
of indicators that could be used to evaluate calibration
risk in the models. Third, most included studies in this
review were conducted with cross-sectional study design,
which conducted in patients with mid-/late-stage LC.
The difference in performance of models based on breath
VOCs among benign PNs and early LC demand further
investigation with a large sample. In addition, eight of
the studies were conducted in small groups, which may
have limited the internal validity of their methods and
the generalizability of their models to the general popula-
tion. Finally, studies that used sensor- and pattern-based
recognition technologies without reporting on the vola-
tile biomarkers analyzed were not included in this review.
Nevertheless, we believe that our report allows for a
comprehensive review of exhaled VOC-based predictive
models for distinguishing between benign PNs and lung
cancer.

Conclusion

Exhaled 2-butanone, 3-hydroxy-2-butanone, and
2-hydroxyacetaldehyde might be significant breath
markers for distinguishing between benign PNs and
lung cancer. Moreover, predictive models that incor-
porate multiple factors alongside exhaled VOCs, such
as demographic characteristics and radiological signs,
have shown superior levels of performance compared
with those based solely on exhaled VOCs. These obser-
vations highlight a conceivable role for VOCs as moni-
toring tools for PNs risk. However, the role of exhaled
VOC-based predictive models in routine clinical practice
has not yet been established, owing to various constraints
associated with breath collection and analysis methods,
as well as a general lack of external validation. Further
investigations are therefore warranted to standardize the
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sample collection and measurement techniques for this
approach, as well as to enhance the reliability and gener-
alizability of such models.
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