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Abstract
Background There is a general rise in incidentally found pulmonary nodules (PNs) requiring follow-up due to 
increased CT use. Biopsy and repeated CT scan are the most useful methods for distinguishing between benign PNs 
and lung cancer, while they are either invasive or involves radiation exposure. Therefore, there has been increasing 
interest in the analysis of exhaled volatile organic compounds (VOCs) to distinguish between benign PNs and lung 
cancer because it’s cheap, noninvasive, efficient, and easy-to-use. However, the exact value of breath analysis in this 
regard remains unclear.

Methods A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic 
search was performed to include studies that established exhaled VOC-based predictive models to distinguish 
between benign PNs and lung cancer and reported the exact VOCs used. Data regarding study characteristics, 
performance of the models, which predictors were incorporated, and methodologies for breath collection and 
analysis were independently extracted by two researchers. The exhaled VOCs incorporated into the predictive 
models were narratively synthesized, and those compounds that were reported in > 2 studies and reportedly 
exhibited consistent associations with lung cancer were considered key breath biomarkers. A quality assessment 
was independently performed by two researchers using both the Newcastle-Ottawa Scale (NOS) and the Prediction 
Model Risk of Bias Assessment Tool (PROBAST).

Results A total of 11 articles reporting on 46 VOC-based predictive models were included. The majority relied 
solely on exhaled VOCs (n = 44), while two incorporated VOCs, demographical factors, and radiological signs. The 
variation in the sensitivity, specificity, and AUC indicators of the models that incorporated multiple factors was 
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Introduction
Lung cancer is the second most common cancer and the 
leading cause of cancer-related deaths worldwide [1, 2]. 
Approximately half of patients with lung cancer are diag-
nosed at an advanced stage, missing the optimal treat-
ment window. This contributes significantly to the high 
mortality rate associated with the malignancy [3]. There-
fore, the early detection and diagnosis of lung cancer are 
of great significance to both clinical practice and general 
public health. Chest radiography and sputum cytology 
have been used for lung cancer screening since the 1970s. 
However, the sensitivity levels of these modalities are low 
[4, 5]. Over the past several decades, the US National 
Lung Cancer Screening Trial (NLST) and several other 
trials in Europe have demonstrated that low-dose com-
puted tomography (LDCT) scan effectively reduces lung 
cancer mortality by facilitating earlier-stage diagnoses 
[6–9]. There is a general rise in incidentally found pulmo-
nary nodules (PNs) requiring follow-up due to increased 
CT use [10]. However, only a small fraction of these 
nodules are actually lung cancer [11–14]. Therefore, it is 
essential to develop efficient and easy-to-use techniques 
for distinguishing between benign PNs and lung cancer, 
as this is crucial for guiding clinical decision-making.

Breath analysis, a simple and noninvasive approach, 
has shown great potential in diagnosing various pulmo-
nary diseases [15]. Breath is a rich medium comprising 
gas-phase organic and inorganic compounds, as well 
as aerosols [16]. In the gas phase, there are hundreds of 
volatile organic compounds (VOCs) of diverse chemi-
cal natures that may be present in trace quantities [16]. 
Although no specific compounds have been identified 
whose presence or absence in exhaled breath can reliably 
indicate lung cancer to date, various prediction mod-
els based on exhaled VOCs can accurately classify lung 
cancer patients and healthy volunteers [17–19]. How-
ever, the value of breath analysis to distinguish between 
benign PNs and lung cancer remains unclear.

Published studies on predictive models for distin-
guishing between benign PNs and lung cancer based on 

exhaled VOCs have reported conflicting results. First, 
there is some inconsistency regarding the types and 
quantities of breath biomarkers incorporated into the 
models. For example, Peled et al. first developed a diag-
nostic model based on a single compound (1-octene) 
to distinguish patients with benign vs. malignant PNs, 
in their prospective trial [20]. By contrast, a team from 
the University of Louisville developed PN predictive 
models by incorporating four compounds: 2-butanone, 
3-hydroxy-2-butanone, 2-hydroxyacetaldehyde, and 
4-hydroxy-2-hexenal [21–23]. Based on these studies, 
researchers from Zhejiang University established pre-
dictive models by incorporating 19 VOCs to distinguish 
between benign PNs and lung cancer [24]. It is worth 
noting that diagnosing lung cancer using a single VOC is 
challenging, highlighting the importance of incorporat-
ing multiple VOCs to conduct more accurate predictions 
[25, 26]. Second, the performance metrics of existing 
models have been inconsistent. Two clinical studies have 
demonstrated that exhaled VOCs can be used to distin-
guish lung cancers confirmed by biopsy analysis from 
suspicious PNs observed on repeated LDCT, with high 
sensitivity and acceptable specificity [23, 27]. However, 
Liao et al. found that predictive models based solely on 
exhaled VOCs are not sufficient to accurately identify 
patients with lung cancer and those with benign PNs and 
reported that the performance of those models must be 
improved by combining them with additional factors 
such as demographic characteristics and radiological 
findings [28].

This review summarizes the current knowledge regard-
ing exhaled VOC-based predictive models for distin-
guishing between benign PNs and lung cancer and 
assesses the overall value of these models in this regard.

Methods
This systematic review was conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) reporting checklist [29]. 
The protocol was registered with the International 

lower compared with those of the models that relied solely on exhaled VOCs. A total of 84 VOCs were incorporated. 
Of these, 2-butanone, 3-hydroxy-2-butanone, and 2-hydroxyacetaldehyde were identified as key predictors that 
had significantly higher concentrations in the exhaled breath samples of patients with lung cancer. Substantial 
heterogeneity was observed in terms of the modeling and validation methods used, as well as the approaches to 
breath collection and analysis. Many of the reports were missing certain key pieces of clinical and methodological 
information.

Conclusions Although exhaled VOC-based models for predicting cancer risk might be a conceivable role as 
monitoring tools for PNs risk, there has been little overall change in the accuracy of these tests over time, and their 
role in routine clinical practice has not yet been established.

Clinical trial number PROSPERO registration number CRD42023381458.
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Prospective Register of Systematic Reviews (PROSPERO) 
(registration number CRD42023381458).

Search strategy
A PRISMA-oriented systematic search was performed 
in PubMed, Embase, Web of Science, Cochrane Library, 
the Chinese National Knowledge Infrastructure (CNKI), 
China Biology Medicine disc (CBM), Wanfang, and 
CQVIP. We initially searched databases from their incep-
tions until 23 July 2022, with an update on 30 September 
2023. The search was conducted through the combina-
tion of the Medical Subject Headings (MeSH) terms and 
keywords ‘lung neoplasms’ ‘lung cancer’ ‘multiple pul-
monary nodules’ ‘solitary pulmonary nodule’ ‘volatile 
organic compounds’ ‘breath’ and ‘exhaled’. A list of the 
detailed search strategy used is described in the Appen-
dix 1.

Inclusion and exclusion criteria
We included studies that reported on the development 
and validation of exhaled VOC-based risk-predictive 
models to distinguish between benign PNs and lung 
cancer. Studies were included if they were conducted in 
patients with LC confirmed via biopsy analysis, as well as 
in patients with benign PNs confirmed via biopsy analy-
sis or detected by repeated radiological scans [30]. The 
included studies needed to identify and report specifi-
cally which VOC biomarkers were used. The predictors 
incorporated into the models were permitted to have 
been either exhaled VOCs alone or combined with other 
factors such as demographic characteristics and radio-
logical signs. Articles published in English or Chinese 
were included, without any restrictions on study design.

Studies that analyzed exogenous VOCs or compounds 
in breath condensate and biofluids such as serum, urine, 
feces, and gastric content were excluded. Studies were 
also excluded if they were not carried out in humans 
or were not relevant to distinguishing between benign 
PNs and lung cancer. Studies limited to identifying risk 
predictors, reviews, letters, comments, and conference 
abstracts were also excluded.

Study selection
The electronic reports identified were imported into the 
reference manager Endnote and duplicates removed. 
Screening title and abstract of studies identified was 
performed by two researchers (ZXS and GYL) indepen-
dently, and then full texts were reviewed to determine 
eligibility for inclusion. During this procedure, poten-
tial studies from the reference lists of original articles 
on this issue were screened and reviewed thoroughly for 
eligibility.

Data extraction and analysis
A pre-defined table was designed to extract the vari-
ables through a panel discussion with experts and epi-
demiologists. Information was extracted from each 
study includes: (1) the characteristics of study (title, first 
author, publication year, study country, study design, 
and study participants); (2) the characteristics of predic-
tion models (candidate variables of the models, variables 
incorporated into the models, statistical method, model-
ing method, internal validation, external validation, sen-
sitivity, specificity, accuracy, and area under the receiver 
operating characteristics (ROC) curves); (3) detailed 
methodologies (breath test environments, patient physi-
ological conditions, sample collection methods, and 
VOC analysis and identification). Data extraction was 
independently performed by two researchers (ZXS and 
GYL). When encountering disagreements, our research 
team would discuss the article and reach a consistent 
agreement.

Quality assessment
The adapted Newcastle-Ottawa Scale (aNOS) used as a 
tool for risk of bias assessment of the included articles 
(Appendix 2) [31]. Moreover, the models’ applicability to 
the intended population and setting were assessed by the 
Prediction Model Risk of Bias Assessment Tool (PRO-
BAST) (Appendix 3) [32, 33]. Two researchers conducted 
a critical appraisal of the studies, with any disagreements 
re-solved through consensus.

Results
Characteristics of the included studies
A total of 2,288 studies were identified. Among them, 
2,240 were published in English, while 48 were in Chi-
nese. In addition, five additional studies have been pre-
liminary added according to their titles through other 
sources, including reference and website [28, 34–37]. 
After removing 1303 duplicates, a total of 990 studies 
underwent title and abstract screening, before 450 stud-
ies were screened for full-text. A total of 439 studies were 
excluded for various reasons, as outlined in Appendix 8. 
Our final analysis included 11 studies (Fig. 1 and Appen-
dix 7). These studies reported 46 VOC-based predictive 
models that had been used to distinguish a total of 597 
patients with benign PNs from 1,700 patients with lung 
cancer. The number of participants involved in establish-
ing the predictive models ranged between 72 and 768 
per study. Of the 11 total studies, seven (63.64%) were 
conducted in the US and four (36.36%) were carried out 
in China. Nine (81.82%) were cross-sectional studies, 
one was a prospective trial, and one was a cohort study. 
The characteristics of the included studies are listed in 
Table 1.
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Breath collection and analysis methods
The most commonly used methodology for collect-
ing exhaled breath involved the use of Tedlar bags (n = 8 
studies, 72.73%), although the sample volume ranged 
between 450 and 1,000 mL. All of the studies used MS-
based techniques such as gas chromatography-mass 
spectrometry (GC-MS; n = 5, 45.45%), Fourier-transform 
ion cyclotron resonance mass spectrometry (FT-ICR-
MS; n = 5, 45.45%), and high-pressure photon ionization 
time-of-flight mass spectrometry (HPPI-TOFMS; n = 1, 
9.1%). Notably, solid-phase microextraction (SPME; n = 3, 
27.27%) and thermal desorption (TD; n = 2, 18.18%) were 
the most frequently used methods for pre-concentrating 
the samples. Regarding the identification of the chemi-
cal structures of the VOCs, four of the studies (36.36%) 
referred to the National Institute of Standards and Tech-
nology Library (NIST), while two (18.18%) relied on MS 
techniques and retention times.

The factors that influenced exhaled VOC concentra-
tions were divided into three categories: breath test envi-
ronments, patient physiological conditions, and breath 
collection and analysis methods. A total of seven stud-
ies (63.64%) described their breath test environments, 
while seven (63.64%) focused on the physiological condi-
tions of the patients analyzed. All of the included studies 
discussed their breath collection and analysis methods. 
Detailed information regarding these factors is presented 
in Table 2.

Incorporated predictors
The number of predictors incorporated into the mod-
els ranged between 1 and 35 (Table  3). Out of 46 total 
predictive models, 44 (95.64%) were solely based on 
VOC biomarkers. Only one model (2.18%) incorpo-
rated both VOC biomarkers and patient ages. Another 
model (2.18%) considered VOC biomarkers, age, and 

Fig. 1 Selection process of PRISMA flow diagram
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radiological signs (including nodule size, count, type, and 
spiculation).

A total of 84 VOCs were incorporated into the predic-
tive models. The most commonly reported VOCs were 
2-hydroxyacetaldehyde (n = 5 studies), 2-butanone (n = 4), 
3-hydroxy-2-butanone (n = 4), and butyric acid (n = 3). 
Among these VOCs, the concentrations of 2-hydroxyac-
etaldehyde, 2-butanone, and 3-hydroxy-2-butanone were 
reported to have been significantly higher in the exhaled 
breath samples of patients with lung cancer. The associa-
tions between butyric acid concentration and lung can-
cer were not reported among any of the included studies. 
Table 4 presents a comprehensive summary of all of the 
VOCs that were reported on in ≥ 2 of the studies. The 
VOCs that were reported on in only one study are listed 
in Appendix 4, along with their chemical classes and CAS 
registry numbers.

Modeling methods
Table 3 presents detailed information regarding the mod-
eling methods used in the included studies. The most 
commonly used modeling methods were machine learn-
ing—which included support vector machine classifica-
tion models (n = 9, 19.57%), logistic regression analysis 
(n = 6, 13.04%), random forest algorithm (n = 3, 6.52%), 
discriminant analysis (n = 3, 6.52%), artificial neural net-
work (n = 2, 4.35%), and partial least squares analysis 
(n = 1, 2.17%). The statistical modeling methods used for 
22 of the models (47.83%) were unclear.

Predictive performance
Each study included in our analysis reported at least one 
measure of predictive performance (Table 3). Nine of the 
studies reported classification measures of 20 predictive 
models. Of these, the sensitivity and specificity values of 
nine of the models (45%) were reported to both be > 70%. 
Six of the studies reported index of prediction accuracy 
values that ranged between 54.15% and 94.6%. Eight of 
the studies assessed discrimination using AUC values, 
which ranged between 0.625 and 0.986. Notably, none of 
the studies reported on calibration measures.

The variation in terms of sensitivity, specificity, and 
AUC values of the models that incorporated multiple fac-
tors was lower compared with those of the models that 
were based solely on exhaled VOCs. Among the mod-
els based solely on exhaled VOC biomarkers, the model 
with the highest sensitivity (100%) exhibited a specific-
ity of 81.8%—while the model with the highest specific-
ity (100%) showed a sensitivity of 28%. When exhaled 
VOC biomarkers were combined with other factors, the 
model with the highest sensitivity (80.80%) had a speci-
ficity of 60.50%, while the model with the highest speci-
ficity (68.3%) had a sensitivity of 78.7%. The models 
based solely on exhaled VOCs had AUC values ranging 

between 0.625 and 0.986, while those that incorporated 
additional factors such as age and radiological signs 
maintained stable AUC values of 0.776–0.781.

Validation approaches
Out of the 46 developed models, 19 (41.3%) exclusively 
underwent internal validation using methods such as 
K-fold cross-validation (n = 13, 28.3%), leave-group-out 
cross-validation (LGOCV; n = 5, 10.9%), and leave-one-
out cross-validation (LOOCV; n = 1, 2.2%). Two of the 
models (4.3%) were internally validated through K-fold 
cross-validation before being subjected to blinded vali-
dation at two independent laboratories. Only one study 
validated two models (4.3%) using a new patient sample.

Study quality assessment
The aNOS scores of the included studies ranged between 
6 and 9 (Appendix 5). Of the 11 total studies, five were 
rated very good, five were rated good, and one was rated 
satisfactory. The one study that received satisfactory rat-
ings did not report on the representativeness levels of 
their patient samples.

The PROBAST tool was used to evaluate the risk of 
bias associated with the included studies. As shown in 
Fig. 2 and Appendix 6, all were found to have a high risk 
of bias in terms of participants, predictors, analysis, and 
overall domains. This high risk of bias may be attributable 
to the inappropriate inclusion criteria or small sample 
sizes of the studies. Predictors were also evaluated based 
on outcome information, and the selection of predictors 
using univariable analysis was done without reporting on 
measures of discrimination or calibration for model per-
formance. Furthermore, the risk of bias in the outcome 
domains was unclear for all 11 of the included studies.

In terms of the applicability of the models, nine of the 
studies had low risks of bias in the participant domain, 
whereas two had unclear risks of bias. All of the models 
developed had unclear risks of bias in the predictors, out-
comes, and overall domains.

Discussion
This systematic review assessed the performance of 
46 predictive models for lung cancer, based on VOCs 
detected in exhaled breath samples, reported in 11 stud-
ies and involving a total of 2,297 patients. Although the 
findings indicated that there was significant heteroge-
neity in the predictive performances of the models in 
terms of distinguishing between benign PNs and lung 
cancer, the models that incorporated additional factors 
such as demographic characteristics and radiological 
signs showed better performance metrics. Several com-
pounds—including 2-butanone, 3-hydroxy-2-butanone, 
and 2-hydroxyacetaldehyde—were identified as being 
the most significant VOCs for distinguishing between 
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benign PNs and lung cancer. Despite the potential of 
VOC breath analysis, there has been little overall change 
in the accuracy of these tests over time, and their role in 
routine clinical practice requires further research to be 
established.

Although the concentrations of exhaled 2-butanone, 
3-hydroxy-2-butanone, and 2-hydroxyacetaldehyde have 
been identified as significant biomarkers for distinguish-
ing between benign pulmonary nodules (PNs) and lung 
cancer, the endogenous origins of these volatile organic 
compounds (VOCs) remain largely unknown or specu-
lative. In lung cancer patients, elevated levels of ketones 
have been observed, which may result from fatty acid oxi-
dation known to increase the production of 2-butanone 
[38, 39]. A previous study has demonstrated that exhaled 
3-hydroxy-2-butanone is likely an endogenous prod-
uct resulting from the degradation of 2-butanone [40]. 
Similar research in rodents has shown that 2-butanone 
is oxidatively metabolized to 3-hydroxy-2-butanone, 
presumably by cytochrome P-450-dependent monooxy-
genases [41, 42]. Additionally, 3-hydroxy-2-butanone is 
produced during the detoxification of acetaldehyde and 
may participate in pulmonary redox cycling, potentially 
generating toxic reactive oxygen species (ROS) that can 
damage lung tissue [43–45]. Endogenous 2-hydroxy-
acetaldehyde is formed through the oxidative degrada-
tion of glucose, as well as from glycated proteins, lipid 
peroxidation, and the oxidation of amino acids [46]. 
This compound, produced by human neutrophils dur-
ing phagocytosis, can be a potential source of ROS and 
may play an important role in tumor development and 
progression [46]. It is also important to note that exhaled 
isoprene has been identified as a marker for lung cancers 
[47]. Initially, it was believed to originate from hepatic 
cholesterogenesis; however, recent study has revealed 
that exhaled isoprene originates from muscular lipolytic 
cholesterol metabolism, as determined by the IDI2 gene 
[48]. Therefore, further research is needed to uncover the 
human metabolic origins of endogenous VOCs in lung 
cancer to promote clinical validation for diagnosis.

Our literature review indicated that, in addition 
to VOCs alone, incorporating multiple factors, such 
as patient characteristics and radiological signs, can 
greatly improve the stability of predictive models based 
on breath samples. Although the majority of the stud-
ies included in this review established predictive mod-
els based solely on exhaled VOCs, two of the ones that 
exhibited superior levels of performance also incorpo-
rated patient ages and radiological signs [28, 49]. When 
considering additional factors, variables such as age and 
smoking status should be considered first, as these rep-
resent known predictors of lung cancer risk [50, 51]. 
Furthermore, researchers have shown that diagnosing 
lung cancer using a single VOC is challenging and that 

incorporating several VOCs may be necessary to enhance 
the performance of such predictive models [25, 26]. 
However, including too many variables may increase the 
risk of model overfitting and spurious relationships [52]. 
Without proper statistical corrections, spurious correla-
tions can be found even in entirely nonsensical contexts, 
referred to as Voodoo correlations [53]. This issue is fur-
ther exacerbated by a relatively small sample size, which 
reduces the power of statistical tests and increases the 
likelihood of false positives. Therefore, well-established 
techniques such as the Bonferroni correction or False 
Discovery Rate (FDR) control that can and should be 
used for the reducing the likelihood of spurious correla-
tions [54, 55].

Performance of predictive models varied significantly 
depending on the algorithm of machine learning. The 
main application field of logistic regression (LR) and sup-
port vector machine (SVM) is binary classification which 
makes these algorithms attractive to solve these clinical 
tasks [56, 57]. Xie SH, Liao PQ, and Chen X et al. uti-
lized LR algorithm to develop predictive models based 
on exhaled VOCs to distinguish between benign PNs 
and lung cancer [24, 28, 49]. The predictive performance 
was almost the same for these models, with acceptable 
AUC values. Rai et al. trained SVM to establish their rel-
evance in lung cancer patients’ classification which also 
achieved an acceptable accuracy [58]. The Random for-
est (RF) algorithm is more flexible because it can iden-
tify a broader scope of possible relationships between 
the model predictors and the disease status [59]. For 
example, Ding, X, et al. demonstrated the efficacy of the 
RF models based 16 exhaled VOCs for discriminating 
lung cancer from benign PNs [60]. In addition, validation 
approaches also varied widely between studies, includ-
ing K-fold cross-validation [24, 28, 58] leave-group-out 
cross-validation [61], and leave-one-out cross-validation 
[20], which makes replication of results between studies 
difficult.

Our review further highlighted that sample collection 
and measurement techniques are hard to rationalize in 
clinical perspective. Many researchers have optimized 
method of exhaled breath analysis before the study of 
real subjects, but the results are varied. For example, 
some studies have required participants to fast for 6–12 h 
before breath collection [24, 28, 49], while Li MX. et al. 
conducted in patients without any diet controls [61]. In 
addition, some researchers have utilized Tedlar bags, 
Mylar bags [20–23, 61], and Bio-VOC breath samplers 
[49, 62] to collect breath samples. While others preferred 
portable breath sample collection devices or self-made 
collection devices [63, 64]. Only the end-tidal phase of a 
breath represents systemic concentrations of VOCs [65], 
while the lack of alveolar sampling in the included studies 
is biased via various confounding effects [21–23, 58, 60, 



Page 8 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

St
ud

y
En

vi
ro

nm
en

ta
l c

on
si

de
ra

tio
ns

Pa
tie

nt
-r

el
at

ed
 fa

ct
or

s
Br

ea
th

 c
ol

le
ct

io
n 

m
et

ho
ds

M
et

ho
d 

of
 a

na
ly

si
s

A
m

-
bi

-
en

t 
ai

r

Sp
ec

ifi
c 

ro
om

 fo
r 

br
ea

th
 

sa
m

pl
in

g

D
et

ec
tio

n 
co

nt
am

in
at

io
n

Ph
ys

i-
ol

og
ic

al
 

co
nd

iti
on

s

Se
tt

in
g

Sa
m

pl
in

g 
pe

ri
od

Sa
m

pl
e 

co
lle

c-
tio

n 
an

d 
ex

tr
ac

tio
n 

m
et

ho
ds

Br
ea

th
 

po
rt

io
n

Vo
lu

m
e

Ro
ut

e
Fl

ow
 

ra
te

St
a-

bi
l-

it
y 

of
 

VO
Cs

A
na

ly
si

s 
pl

at
fo

rm
Se

ns
iti

vi
ty

Re
pe

at
-

ab
ili

ty
VO

C 
id

en
-

tifi
ca

-
tio

n

Pe
le

d,
 N

. 
[2

0]
N

R
N

R
N

R
N

R
th

e 
U

ni
-

ve
rs

ity
 o

f 
Co

lo
ra

do
 

Ca
nc

er
 

Ce
nt

er
 a

nd
 

D
en

ve
r 

Ve
te

ra
ns

 
Aff

ai
rs

 M
ed

-
ic

al
 C

en
te

r, 
Am

er
ic

a

N
R

M
yl

ar
 

ba
g 

+
 SP

M
E

al
l

75
0 

m
L

m
ou

th
N

R
N

R
G

C-
M

S
N

R
N

R
N

R

Bo
us

am
-

ra
, M

., 
2n

d 
[2

1]

co
l-

le
ct

-
ed

.

N
R

N
R

N
R

N
R

N
R

Te
ld

ar
 b

ag
al

l
1 

L
N

R
N

R
N

R
FT

-IC
R-

M
S

N
R

N
R

N
R

Fu
, X

. A
. 

[2
2]

co
l-

le
ct

-
ed

.

N
R

N
R

N
R

N
R

be
fo

re
 

re
se

ct
io

n
1 

L 
Te

dl
ar

 
ba

g
al

l
1 

L
N

R
N

R
N

R
FT

-IC
R-

M
S

N
R

N
R

co
n-

fir
m

ed
 

by
 

FT
-IC

R-
M

S/
M

S
Li

, M
. X

. 
[6

1]
co

l-
le

ct
-

ed
.

cl
in

ic
 ro

om
Te

dl
ar

s b
ag

s a
nd

 
sy

rin
ge

s w
er

e 
te

st
ed

 fr
ee

 o
f 

co
nt

am
in

at
io

n.

no
 d

ie
t 

co
nt

ro
ls

th
e 

Ja
m

es
 

G
ra

ha
m

 
Br

ow
n 

Ca
n-

ce
r C

en
te

r 
at

 th
e 

U
ni

-
ve

rs
ity

 o
f 

Lo
ui

sv
ill

e,
 

Am
er

ic
a

N
R

1 
L 

Te
dl

ar
 

ba
g

al
l

N
R

N
R

5 m
L/

m
in

N
R

FT
-IC

R-
M

S
N

R
N

R
N

R

Sc
hu

m
-

er
, E

. M
. 

[2
3]

N
R

N
R

N
R

N
R

N
R

N
R

Te
dl

ar
 b

ag
al

l
1 

L
N

R
N

R
N

R
FT

-IC
R-

M
S

N
R

N
R

N
R

Ph
ill

ip
s, 

M
. [

27
]

N
R

N
R

N
R

N
R

N
R

N
R

a 
du

al
-

be
dd

ed
 

so
rb

en
t 

tr
ap

 +
 TD

al
l

1 
L

m
ou

th
N

R
at

 
le

as
t 

3 ye
ar

s

G
C-

M
S

N
R

re
pl

ic
at

e 
as

sa
ys

 a
t 

tw
o 

in
de

-
pe

nd
en

t 
la

bo
ra

to
-

rie
s

ac
-

co
rd

-
in

g 
to

 
m

as
s 

sp
ec

-
tr

om
-

et
ry

 
lib

ra
ry

 
N

IS
T

Ta
bl

e 
2 

Su
m

m
ar

y 
of

 fa
ct

or
s r

ep
or

te
d 

to
 in

flu
en

ce
 v

ol
at

ile
 o

rg
an

ic
 c

om
po

un
ds

 w
ith

in
 e

xh
al

ed
 b

re
at

h



Page 9 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

St
ud

y
En

vi
ro

nm
en

ta
l c

on
si

de
ra

tio
ns

Pa
tie

nt
-r

el
at

ed
 fa

ct
or

s
Br

ea
th

 c
ol

le
ct

io
n 

m
et

ho
ds

M
et

ho
d 

of
 a

na
ly

si
s

A
m

-
bi

-
en

t 
ai

r

Sp
ec

ifi
c 

ro
om

 fo
r 

br
ea

th
 

sa
m

pl
in

g

D
et

ec
tio

n 
co

nt
am

in
at

io
n

Ph
ys

i-
ol

og
ic

al
 

co
nd

iti
on

s

Se
tt

in
g

Sa
m

pl
in

g 
pe

ri
od

Sa
m

pl
e 

co
lle

c-
tio

n 
an

d 
ex

tr
ac

tio
n 

m
et

ho
ds

Br
ea

th
 

po
rt

io
n

Vo
lu

m
e

Ro
ut

e
Fl

ow
 

ra
te

St
a-

bi
l-

it
y 

of
 

VO
Cs

A
na

ly
si

s 
pl

at
fo

rm
Se

ns
iti

vi
ty

Re
pe

at
-

ab
ili

ty
VO

C 
id

en
-

tifi
ca

-
tio

n

Sh
ao

hu
a 

Xi
e 

[4
9]

co
l-

le
ct

-
ed

.

a 
ve

nt
ila

te
d 

ro
om

N
R

Si
t o

ve
r 

10
 m

in
, 

av
oi

d 
fo

od
 

an
d 

sm
ok

e 
fo

r a
t l

ea
st

 
8 

h.
 N

o 
de

ep
 in

ha
la

-
tio

n 
be

fo
re

 
sa

m
pl

in
g,

 
no

 v
en

til
a-

tio
n 

th
ro

ug
h 

na
sa

l a
nd

 
no

 se
co

nd
 

br
ea

th
s 

du
rin

g 
sa

m
pl

in
g.

Si
ch

ua
n 

Ca
nc

er
 

H
os

pi
ta

l, 
Ch

in
a

be
fo

re
 

bi
op

sy
 o

r 
re

se
ct

io
n

50
0 

m
L 

Te
dl

ar
 

ba
g 

+
 B

io
-

VO
C 

br
ea

th
 

sa
m

-
pl

er
 +

 SP
M

E

la
st

 p
or

tio
n

45
0m

L
m

ou
th

N
R

1 w
ee

k
G

C-
M

S
35

–2
00

 m
/z

N
R

ac
-

co
rd

-
in

g 
to

 
m

as
s 

sp
ec

-
tr

om
-

et
ry

 
lib

ra
ry

 
N

IS
T 

08

Pe
ng

q-
ia

ng
 

Li
ao

 [2
8]

N
R

N
R

N
R

Pa
rt

ic
i-

pa
nt

s w
er

e 
re

qu
ire

d 
no

t 
to

 e
at

 fo
r 

8 
h 

be
fo

re
 

br
ea

th
 c

ol
-

le
ct

io
n,

 a
nd

 
re

st
 fo

r a
t 

le
as

t 1
0 

m
in

 
in

 a
 w

el
l-

ve
nt

ila
te

d 
ro

om
; D

ee
p 

br
ea

th
-

in
g 

be
fo

re
 

sa
m

pl
in

g 
an

d 
na

sa
l 

ve
nt

ila
tio

n 
an

d 
se

co
nd

-
ar

y 
br

ea
th

-
in

g 
du

rin
g 

sa
m

pl
in

g 
w

er
e 

no
t 

al
lo

w
ed

.

Si
ch

ua
n 

Ca
nc

er
 

H
os

pi
ta

l; 
N

an
ch

on
g 

Ce
nt

ra
l 

H
os

pi
ta

l; 
Lo

ng
qu

an
yi

 
CD

C

be
fo

re
 

re
se

ct
io

n
50

0 
m

l 
Te

dl
ar

 
ba

g 
+

 SP
M

E

la
st

 p
or

tio
n

45
0m

L
m

ou
th

N
R

w
ith

-
in

 7
 

da
ys

G
C-

M
S

35
-2

00
am

u
N

R
ac

-
co

rd
-

in
g 

to
 

m
as

s 
sp

ec
-

tr
om

-
et

ry
 

lib
ra

ry
 

N
IS

T 
an

d 
RI

Ta
bl

e 
2 

(c
on

tin
ue

d)

 



Page 10 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

St
ud

y
En

vi
ro

nm
en

ta
l c

on
si

de
ra

tio
ns

Pa
tie

nt
-r

el
at

ed
 fa

ct
or

s
Br

ea
th

 c
ol

le
ct

io
n 

m
et

ho
ds

M
et

ho
d 

of
 a

na
ly

si
s

A
m

-
bi

-
en

t 
ai

r

Sp
ec

ifi
c 

ro
om

 fo
r 

br
ea

th
 

sa
m

pl
in

g

D
et

ec
tio

n 
co

nt
am

in
at

io
n

Ph
ys

i-
ol

og
ic

al
 

co
nd

iti
on

s

Se
tt

in
g

Sa
m

pl
in

g 
pe

ri
od

Sa
m

pl
e 

co
lle

c-
tio

n 
an

d 
ex

tr
ac

tio
n 

m
et

ho
ds

Br
ea

th
 

po
rt

io
n

Vo
lu

m
e

Ro
ut

e
Fl

ow
 

ra
te

St
a-

bi
l-

it
y 

of
 

VO
Cs

A
na

ly
si

s 
pl

at
fo

rm
Se

ns
iti

vi
ty

Re
pe

at
-

ab
ili

ty
VO

C 
id

en
-

tifi
ca

-
tio

n

Ch
en

, X
. 

[2
4]

co
l-

le
ct

-
ed

.

a 
sp

ec
ifi

c 
co

nt
ro

lle
d 

ro
om

N
R

Av
oi

d 
hi

gh
 

fa
t f

oo
d 

an
y 

an
tio

xi
da

nt
 

su
pp

le
-

m
en

ts
 fo

r a
t 

le
as

t 2
4 

h.
 

Fa
st

in
g 

fo
r 

12
 h

, t
he

n 
st

ay
ed

 in
 

a 
sp

ec
ifi

c 
ro

om
. N

ex
t 

da
y 

be
fo

re
 

th
e 

br
ea

k-
fa

st
, t

he
 

pa
rt

ic
ip

an
ts

 
ar

riv
ed

 in
 a

 
sp

ec
ifi

c 
co

n-
tr

ol
le

d 
ro

om
 

fo
r b

re
at

h 
sa

m
pl

e 
co

l-
le

ct
io

n.
Th

e 
pa

rt
ic

ip
an

ts
 

di
dn

’t 
br

us
h 

te
et

h,
 a

nd
 

ga
rg

le
d 

w
ith

 p
la

in
 

ta
p 

w
at

er
 

15
 m

in
 

be
fo

re
.

Si
r R

un
 

Ru
n 

Sh
aw

 
H

os
pi

ta
l, 

Ch
in

a

N
R

TD
la

st
 p

or
tio

n
1 

L
m

ou
th

N
R

N
R

G
C-

M
S

45
–5

00
 m

/z
Re

pe
ti-

tiv
e 

te
st

s 
w

er
e 

pe
r-

fo
rm

ed
 

on
 

co
lle

ct
ed

 
ai

r a
nd

 
br

ea
th

 
sa

m
pl

es
.

ac
-

co
rd

-
in

g 
to

 
m

as
s 

sp
ec

-
tr

om
-

et
ry

 
lib

ra
ry

 
N

IS
T 

05
 a

nd
 

N
IS

T 
05

 s

Ta
bl

e 
2 

(c
on

tin
ue

d)

 



Page 11 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

St
ud

y
En

vi
ro

nm
en

ta
l c

on
si

de
ra

tio
ns

Pa
tie

nt
-r

el
at

ed
 fa

ct
or

s
Br

ea
th

 c
ol

le
ct

io
n 

m
et

ho
ds

M
et

ho
d 

of
 a

na
ly

si
s

A
m

-
bi

-
en

t 
ai

r

Sp
ec

ifi
c 

ro
om

 fo
r 

br
ea

th
 

sa
m

pl
in

g

D
et

ec
tio

n 
co

nt
am

in
at

io
n

Ph
ys

i-
ol

og
ic

al
 

co
nd

iti
on

s

Se
tt

in
g

Sa
m

pl
in

g 
pe

ri
od

Sa
m

pl
e 

co
lle

c-
tio

n 
an

d 
ex

tr
ac

tio
n 

m
et

ho
ds

Br
ea

th
 

po
rt

io
n

Vo
lu

m
e

Ro
ut

e
Fl

ow
 

ra
te

St
a-

bi
l-

it
y 

of
 

VO
Cs

A
na

ly
si

s 
pl

at
fo

rm
Se

ns
iti

vi
ty

Re
pe

at
-

ab
ili

ty
VO

C 
id

en
-

tifi
ca

-
tio

n

Ra
i, 

S.
 N

. 
[5

8]
co

l-
le

ct
-

ed
.

a 
cl

in
ic

 
ex

am
 ro

om
N

R
N

R
he

al
th

y 
co

nt
ro

l: 
pa

-
tie

nt
 fa

m
ily

 
m

em
be

rs
th

e 
Ja

m
es

 
G

ra
ha

m
 

Br
ow

n 
Ca

n-
ce

r C
en

te
r 

an
d 

Je
w

ish
 

H
os

pi
ta

l 
at

 th
e 

U
ni

-
ve

rs
ity

 o
f 

Lo
ui

sv
ill

e

N
R

1 
L 

Te
dl

ar
 

ba
g

al
l

1 
L

m
ou

th
5 m

L/
m

in

N
R

FT
-IC

R-
M

S
N

R
N

R
N

R

D
in

g,
 X

. 
[6

0]
co

l-
le

ct
-

ed
.

a 
fix

ed
 

ro
om

N
R

Pa
rt

ic
ip

an
ts

 
fa

st
ed

 fo
r a

t 
le

as
t 6

 h
.

Pa
rt

ic
i-

pa
nt

s w
er

e 
as

ke
d 

no
t 

to
 in

ge
st

 
sp

ic
y 

fo
od

, 
al

co
ho

l, 
or

 
co

ffe
e 

th
e 

ni
gh

t b
ef

or
e 

ex
ha

le
d 

br
ea

th
 

co
lle

ct
io

n.
Pa

rt
ic

ip
an

ts
 

fir
st

 g
ar

gl
ed

 
w

ith
 p

ur
e 

w
at

er

PK
U

PH
 

Co
ho

rt
: t

he
 

D
ep

ar
t-

m
en

t o
f 

Th
or

ac
ic

 
Su

rg
er

y, 
Pe

ki
ng

 
U

ni
ve

rs
ity

 
Pe

op
le

’s 
H

os
pi

ta
l;

CH
PK

U
 

Co
ho

rt
: 

th
e 

Ca
nc

er
 

H
os

pi
ta

l 
of

 P
ek

in
g 

U
ni

ve
rs

ity

be
fo

re
 

PE
T-

C
T 

sc
an

ni
ng

 
an

d 
th

e 
m

or
ni

ng
 

be
fo

re
 

su
rg

er
y

Te
dl

ar
 b

ag
al

l
N

R
m

ou
th

N
R

w
ith

-
in

 
4 

h

H
PP

I-
TO

FM
S

m
/z

 <
 5

00
N

R
de

-
te

ct
ed

 
by

 
H

PP
I-

TO
FM

S

N
R:

 N
ot

 re
po

rt
; G

C-
M

S:
 G

as
 C

hr
om

at
og

ra
ph

y 
M

as
s S

pe
ct

ro
m

et
ry

; L
C:

 L
un

g 
ca

nc
er

; S
PM

E:
 S

ol
id

 p
ha

se
 m

ic
ro

ex
tr

ac
tio

n;
 N

IS
T:

 th
e 

N
at

io
na

l I
ns

tit
ut

e 
of

 S
ta

nd
ar

ds
 a

nd
 T

ec
hn

ol
og

y 
M

as
s S

pe
ct

ro
m

et
ry

 li
br

ar
y;

 F
T-

IC
R-

M
S:

 F
ou

rie
r 

Tr
an

sf
or

m
 Io

n 
Cy

cl
ot

ro
n 

Re
so

na
nc

e 
M

as
s 

Sp
ec

tr
om

et
ry

; T
D

: t
he

rm
al

 d
es

or
pt

io
n;

 P
TR

-M
S:

 P
ro

to
n 

Tr
an

sf
er

 R
ea

ct
io

n 
M

as
s 

Sp
ec

tr
om

et
ry

Ta
bl

e 
2 

(c
on

tin
ue

d)
 



Page 12 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

St
ud

y
St

ud
y 

pa
rt

ic
ip

an
ts

In
cl

ud
ed

 v
ar

ia
bl

es
St

at
is

tic
al

 
m

et
ho

d
M

od
el

in
g 

m
et

ho
d

Va
lid

at
io

n 
m

et
ho

d
N

um
be

r
Se

ns
i-

tiv
it

y 
(%

)

Sp
ec

ifi
c-

it
y 

(%
)

A
cc

ur
a-

cy
 (%

)
AU

C
VO

Cs
no

-V
O

Cs

Pe
le

d,
 N

. 
[2

0]
53

 p
at

ie
nt

s w
ith

 
M

PN
, 1

9 
w

ith
 

BP
N

1-
oc

te
ne

N
R

W
ilc

ox
on

/K
ru

s-
ka

l–
 W

al
lis

 te
st

D
FA

In
te

rn
al

 v
al

id
a-

tio
n:

 L
O

O
CV

1
①

 8
6%

①
 9

6.
00

%
①

 
88

.0
0%

①
 0

.9
86

Bo
us

am
-

ra
, M

., 
2n

d 
[2

1]

10
7 

pa
tie

nt
s 

w
ith

 L
C,

 4
0 

pa
tie

nt
s w

ith
 

BP
N

s

2-
bu

ta
no

ne
; 3

-h
yd

ro
xy

-2
-b

ut
an

on
e;

 2
-h

yd
ro

xy
-

ac
et

al
de

hy
de

; 4
-h

yd
ro

xy
he

xe
na

l
N

R
W

ilc
ox

on
 te

st
  +

   
AN

O
VA

N
R

N
R

9
①

 N
R;

 ②
 

21
%

; ③
 

60
%

; ④
 

84
%

; ⑤
 

92
%

; ⑥
 

28
%

; ⑦
 

70
%

;⑧
 

89
%

; ⑨
 

95
%

①
 N

R;
 ②

 
10

0%
; ③

 
94

%
; ④

 
74

%
; ⑤

 
45

%
; ⑥

 
10

0%
; ⑦

 
95

%
; ⑧

 
74

%
; ⑨

 
45

%

①
 -⑨

 N
R

①
 0

.8
;

②
 -⑨

 N
R

Fu
, X

. A
. 

[2
2]

97
 p

at
ie

nt
s 

w
ith

 M
PN

, 3
2 

pa
tie

nt
s w

ith
 

BP
N

2-
bu

ta
no

ne
; 2

-h
yd

ro
xy

ac
et

al
de

hy
de

; 3
-h

yd
ro

xy
-

2-
bu

ta
no

ne
; 4

-h
yd

ro
xy

he
xe

na
l

N
R

W
ilc

ox
on

 te
st

N
R

N
R

1
①

 
89

.8
0%

①
 8

1.
30

%
①

 
87

.6
0%

①
 N

R

Li
, M

. X
. 

[6
1]

85
 p

at
ie

nt
s 

w
ith

 M
PN

, 3
4 

pa
tie

nt
s w

ith
 

BP
N

hy
dr

ox
ya

ce
ta

ld
eh

yd
e;

 2
-b

ut
an

on
e;

 4
-h

yd
ro

xy
-

2-
he

xe
na

l; 
a 

m
ix

tu
re

 o
f 2

-p
en

ta
no

ne
 a

nd
 p

en
ta

na
l; 

3-
hy

dr
ox

y-
2-

bu
ta

no
ne

N
R

Kr
us

ka
l–

 W
al

lis
 

te
st

PL
S  

+
   

SV
M

  +
   R

F  
+

  L
D

A 
 +

   
Q

D
A

In
te

rn
al

 v
al

id
a-

tio
n:

 L
CO

G
V

14
①

 
10

0%
; 

②
 -⑭

 
N

R

①
 8

1.
8%

; 
②

 -⑭
 N

R
①

 0
.9

46
; 

②
 0

.8
92

; 
③

 0
.8

92
; 

④
 0

.8
65

; 
⑤

 0
.8

11
; 

⑥
 -⑭

 
N

R

①
 -⑤

 N
R;

⑥
 

0.
90

1;
 ⑦

 
0.

82
1;

 ⑧
 

0.
69

4;
 ⑨

 
0.

79
3;

 ⑩
 

0.
62

5;
 ⑪

 
0.

69
6;

 ⑫
 

0.
79

3;
⑬

 
0.

66
; ⑭

 
0.

87
4

Sc
hu

m
-

er
, E

. M
. 

[2
3]

15
6 

pa
tie

nt
d 

w
ith

 L
C,

 6
5 

pa
tie

nt
s w

ith
 

BP
N

s

2-
bu

ta
no

ne
, 3

-h
yd

ro
xy

-2
-b

ut
an

on
e,

 2
-h

yd
ro

xy
ac

-
et

al
de

hy
de

, 4
-h

yd
ro

xy
he

xa
na

l
N

R
N

R
N

R
N

R
3

①
 

93
.6

%
; 

②
 

76
.9

%
; 

③
 

40
.4

%

①
 4

4.
6%

; 
②

 7
8.

5%
; 

③
 9

0.
8%

①
 -③

 N
R

①
 -③

 N
R

Ph
ill

ip
s, 

M
. [

27
]

65
 p

at
ie

nt
s 

w
ith

 M
PN

, 1
5 

pa
tie

nt
s w

ith
 

BP
N

1,
4-

bu
ta

ne
di

ol
; 2

-p
en

ta
na

m
in

e,
 4

-m
et

hy
l-;

 
2-

pr
op

an
am

in
e;

 3
-b

ut
en

am
id

e;
 4

-p
en

te
n-

2-
ol

; 
ac

et
am

id
e,

 2
-c

ya
no

al
an

in
e;

 N
-m

et
hy

lg
ly

ci
ne

; 
oc

to
dr

in
e

N
R

N
R

fu
zz

y 
lo

gi
st

ic
 

re
gr

es
sio

n

Bl
in

de
d 

va
lid

a-
tio

n;
 In

te
rn

al
 

va
lid

at
io

n:
 

cr
os

s-
va

lid
at

io
n

2
①

 
80

.1
%

;
②

 N
R

①
 7

5%
;

②
 N

R
①

 8
0.

5%
; 

②
 N

R
①

 0
.8

8;
②

 0
.8

0

Sh
ao

hu
a 

Xi
e 

[4
9]

10
4 

w
ith

 M
PN

, 
43

 p
at

ie
nt

s w
ith

 
BP

N

Cy
cl

op
en

ta
ne

; P
en

ta
ne

, 3
-m

et
hy

l-;
 e

th
yl

be
nz

en
e;

 
N

, N
-d

i(m
et

hy
l)f

or
m

am
id

e
ag

e
t-

te
st

 +
  M

an
n-

W
hi

tn
ey

 U
 

te
st

 +
 χ 

2 
te

st
 +

  
Fi

sh
er

 e
xa

ct
 

pr
ob

ab
ili

ty

bi
va

ria
te

 
lo

gi
st

ic
 

re
gr

es
sio

n

N
R

1
①

 
80

.8
0%

①
 6

0.
50

%
①

 N
R

①
 0

.7
81

Ta
bl

e 
3 

Pr
ed

ic
to

rs
, m

et
ho

ds
, a

nd
 p

er
fo

rm
an

ce
 o

f t
he

 a
ss

es
se

d 
de

ve
lo

pm
en

t m
od

el
s



Page 13 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

St
ud

y
St

ud
y 

pa
rt

ic
ip

an
ts

In
cl

ud
ed

 v
ar

ia
bl

es
St

at
is

tic
al

 
m

et
ho

d
M

od
el

in
g 

m
et

ho
d

Va
lid

at
io

n 
m

et
ho

d
N

um
be

r
Se

ns
i-

tiv
it

y 
(%

)

Sp
ec

ifi
c-

it
y 

(%
)

A
cc

ur
a-

cy
 (%

)
AU

C
VO

Cs
no

-V
O

Cs

Pe
ng

q-
ia

ng
 L

ia
o 

[2
8]

62
9 

pa
tie

nt
s 

w
ith

 L
C,

 1
39

 
pa

tie
nt

s w
ith

 
BP

N

α 
-P

in
en

e;
 2

,3
,6

-t
rim

et
hy

l-H
ep

ta
ne

; 2
-M

et
hy

l-
na

ph
th

al
en

e;
 Te

tr
ac

hl
or

oe
th

yl
en

e;
 N

ap
ht

ha
le

ne
; 

N
ap

ht
ha

le
ne

, 1
-m

et
hy

l-;
 F

ur
an

, t
et

ra
hy

dr
o-

2,
2,

5,
5-

te
tr

am
et

hy
l; 

p-
Cr

es
ol

; 1
-P

ro
pe

ne
-1

-t
hi

ol
; 5

-H
ep

te
n-

2-
on

e,
6-

m
et

hy
l-;

 U
nd

ec
an

e;
 M

et
hy

lv
in

yl
ke

to
ne

; 
D

im
et

ha
di

on
e;

 3
-P

en
te

no
ic

ac
id

,4
-m

et
hy

l; 
4-

M
e-

th
ox

yp
he

no
l; 

Pr
op

an
oi

ca
ci

d,
2-

m
et

hy
l-,

bu
ty

le
st

er
; 

N
,N

-D
im

et
hy

la
ce

ta
m

id
e;

 te
rt

-B
ut

an
ol

; M
et

hy
le

ne
-

ch
lo

rid
e;

 G
ua

ia
co

l; 
Ac

et
ic

Ac
id

; b
en

ze
ne

; P
ro

pi
on

ic
-

Ac
id

; O
xe

ta
ne

,2
,2

-d
im

et
hy

l; 
Ac

et
on

e;
 B

ut
an

oi
ca

ci
d;

 
Cy

cl
oh

ex
an

e 
an

d 
3 

un
kn

ow
n 

co
m

po
un

ds

ag
e,

 e
m

-
ph

ys
em

a,
 

tu
m

or
 si

ze
, 

tu
m

or
 

ty
pe

, s
pi

c-
ul

e 
sig

n

—
G

A-
SV

M
 +

  
Bi

na
ry

 
lo

gi
st

ic
 

re
gr

es
sio

n

In
te

rn
al

 
va

lid
at

io
n:

5-
fo

ld
 

cr
os

s-
va

lid
at

io
n

2
①

 
51

.0
6%

;
②

 
78

.7
%

①
68

.2
9%

; 
②

68
.3

%
①

54
.1

5%
②

75
.5

6%
①

0.
65

; 
②

0.
77

6

Ch
en

, X
. 

[2
4]

16
0 

pa
tie

nt
s 

w
ith

 M
PN

, 7
0 

pa
tie

nt
s w

ith
 

BP
N

1,
2-

D
ic

hl
or

oe
th

an
e;

 B
en

ze
ne

; 2
,4

-D
im

et
hy

lh
ex

an
e;

 
H

ep
ta

ne
; D

i-t
er

t-
bu

ty
lp

er
ox

id
e;

 Te
tr

ac
hl

or
o-

et
hy

le
ne

; H
ep

ta
na

l; 
Pr

op
yl

cy
cl

oh
ex

an
e;

2-
N

on
-

en
al

, (
2E

); 
Cy

cl
oh

ex
an

e,
 h

ep
ty

l; 
1,

4-
M

et
ha

no
az

ul
en

-9
-o

l, 
de

ca
hy

dr
o-

1,
5,

5,
8a

-
te

tr
am

et
hy

l-,
(1

R,
3a

R,
4 

S,
8a

S,
9 

S)
;2

,4
-H

ex
ad

iy
ne

; B
u-

ty
ric

ac
id

; 2
-m

et
hy

lb
ut

yr
ic

ac
id

; C
yc

lo
no

na
sil

ox
an

e,
 

oc
ta

de
ca

m
et

hy
l-(

8C
I,9

CI
); 

O
ct

ad
ec

am
et

hy
lc

yc
lo

-
no

na
sil

ox
an

e;
 B

en
zo

ic
ac

id
,3

,5
-b

is(
1,

1-
di

m
et

h-
yl

et
hy

l);
 M

ET
H

YL
10

-M
ET

H
YL

U
N

D
EC

AN
O

AT
E;

 
p-

Te
rp

he
ny

l

N
R

N
R

lo
gi

st
ic

 
re

gr
es

-
sio

n 
+

 A
N

N

In
te

rn
al

 
va

lid
at

io
n:

5-
fo

ld
 

cr
os

s-
va

lid
at

io
n

4
①

-④
 N

R
①

-④
 N

R
①

-④
 N

R
①

 0
.8

09
; ②

 
0.

79
9;

③
0.

75
6;

 
④

 0
.7

79
;

Ra
i, 

S.
 N

. 
[5

8]
15

6 
pa

tie
nt

s 
w

ith
 L

C,
 6

5 
pa

tie
nt

s w
ith

 
be

ni
gn

 P
N

s

Bu
ty

ra
ld

eh
yd

e;
 H

ex
an

al
;2

-H
ep

ta
no

ne
; O

ct
an

al
; 

U
nd

ec
an

al
; B

ut
yr

ic
ac

id
; A

ce
tic

ac
id

; A
cr

ol
ei

n;
 4

-h
y-

dr
ox

yh
ex

an
al

; 4
-H

yd
ro

xy
no

ne
na

l; 
Cy

cl
op

en
ta

no
ne

; 
D

ic
yc

lo
he

xy
lk

et
on

e

N
R

Bo
ot

-S
VM

-R
FE

SV
M

In
te

rn
al

 
va

lid
at

io
n:

 5
-fo

ld
 

cr
os

s-
va

lid
at

io
n

7
①

-⑦
N

R
①

-⑦
N

R
①

 
76

.9
8;

②
 

76
.0

7;
③

 
76

.2
5;

④
 

78
.4

8;
⑤

 
76

.7
2;

 ⑥
 

77
.6

5;
⑦

 
77

.9
2

①
 -⑦

N
R

D
in

g,
 X

. 
[6

0]
PK

U
PH

 C
oh

or
t: 

49
 lu

ng
 c

an
ce

r 
pa

tie
nt

s a
nd

 5
1 

be
ni

gn
 p

ul
m

o-
na

ry
 n

od
ul

es
CH

PK
U

 C
oh

or
t: 

39
 lu

ng
 c

an
ce

r 
an

d 
24

 b
en

ig
n 

no
du

le
s

ac
et

al
de

hy
de

, 2
-h

yd
ro

xy
ac

et
al

de
hy

de
, i

so
pr

en
e,

 
pe

nt
an

al
, b

ut
yr

ic
ac

id
, t

ol
ue

ne
,2

,5
-d

im
et

hy
lfu

ra
n,

 
cy

cl
oh

ex
an

on
e,

 h
ex

an
al

, h
ep

ta
na

l, 
ac

et
op

he
no

ne
, 

pr
op

yl
cy

cl
oh

ex
an

e,
 o

ct
an

al
, n

on
an

al
, d

ec
an

al
, 

an
d2

, 2
-d

im
et

hy
ld

ec
an

e

N
R

t-
te

st
 +

  F
ish

er
’s 

ex
ac

t t
es

t
RF

Ex
te

rn
al

 
va

lid
at

io
n

2
①

 
82

.1
%

;
②

 
71

.8
%

①
 

92
.3

%
;②

 
76

.9
%

①
 

84
.6

%
;②

 
73

.1
%

①
0.

87
2;

 
②

0.
74

4

①
-⑭

: m
od

el
 1

 to
 1

4;
 N

R:
 N

ot
 re

po
rt

; F
or

w
ar

d 
SD

A
: F

or
w

ar
d 

st
ep

w
is

e 
di

sc
rim

in
an

t a
na

ly
si

s;
 L

O
O

C
V:

 L
ea

ve
-o

ne
-o

ut
 c

ro
ss

-v
al

id
at

io
n;

 F
is

he
r S

D
A

: F
is

he
r s

te
pw

is
e 

di
sc

rim
in

an
t a

na
ly

si
s;

 D
FA

: D
is

cr
im

in
an

t f
ac

to
r a

na
ly

si
s;

 A
N

O
VA

: 
A

na
ly

si
s o

f v
ar

ia
nc

e;
 A

N
N

: A
rt

ifi
ci

al
 n

eu
ra

l n
et

w
or

k;
 F

is
he

r D
A

: F
is

he
r d

is
cr

im
in

an
t a

na
ly

si
s;

 G
A

-S
VM

: G
en

et
ic

 a
lg

or
ith

m
-s

up
po

rt
 v

ec
to

r m
ac

hi
ne

; P
LS

: P
ar

tia
l l

ea
st

 sq
ua

re
s;

 S
VM

: S
up

po
rt

 v
ec

to
r m

ac
hi

ne
 c

la
ss

ifi
ca

tio
n 

m
od

el
s;

 
RF

: R
an

do
m

 fo
re

st
 a

lg
or

ith
m

; L
D

A
: L

in
ea

r d
is

cr
im

in
an

t a
na

ly
si

s;
 Q

D
A

: Q
ua

dr
at

ic
 d

is
cr

im
in

an
t a

na
ly

si
s;

 L
G

O
C

V:
 L

ea
ve

 g
ro

up
 o

ut
 c

ro
ss

-v
al

id
at

io
n

Ta
bl

e 
3 

(c
on

tin
ue

d)

 



Page 14 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

61]. Physio-metabolic and analytical confounders are to 
be minimized to realize actual pathophysiological effects 
on exhaled VOC concentrations [66]. Therefore, to stan-
dardize the procedure for exhaled breath analysis, expert 
opinions can be gathered through various methods, such 
as the Delphi process [67].

MS-based techniques are generally considered the gold 
standard for analyzing VOCs, owing to their ability to 
determine the molecular masses and possible chemical 
structures of individual VOCs [68]. However, this tech-
nique is subject to certain limitations. First, the analysis 
of VOC biomarkers using MS-based techniques requires 
pre-concentration and a high level of expertise, mak-
ing them too expensive and complex for many clinical 
application [69, 70]. Moreover, pre-concentration meth-
ods may selectively enhance the signals of certain VOCs 
while simultaneously leading to the loss of others [20]. 
Second, breath samples are recommended to be analyzed 
within six hours of collection to best preserve sample 
compositions [71]. However, it is important to consider 

that background pollutants from the sampling equipment 
may potentially alter breath sample compositions as well 
[71, 72]. From a clinical perspective, clinicians are more 
interested in identifying “treatable traits” by stratify-
ing patients based on clinically relevant qualities such as 
diagnosis, prognosis, and treatment response [73, 74]. In 
this scenario, simpler more cost-effective techniques have 
been considered and developed, such as the electronic 
nose (or “e-nose”) [75]. Many researchers have concluded 
that e-noses have the potential to become promising 
diagnostic tools in everyday clinical practices [76, 77].

Although existing VOC-based predictive models have 
shown acceptable levels of performance for distinguish-
ing between benign PNs and lung cancer, the majority of 
the existing predictive models for distinguishing between 
benign PNs and lung cancer have not undergone valida-
tion, which hinders their clinical implementation. Ide-
ally, external validations of VOC-based predictive models 
should be performed in large observational cohorts 
that have been carefully designed to be accurately 

Table 4 Volatile organic compounds reported in at least two studies
Compound name Frequency Level of VOCs Chemical Classes CAS

LC> BPN BPN> LC
2-hydroxyacetaldehyde 5 Yes Aldehydes 141-46-8
4-hydroxyhexenal 2 Yes Aldehydes 109710-37-4
Acrolein 2 Yes Aldehydes 107-02-8
4-hydroxy-2-nonenal 2 Yes Aldehydes 75899-68-2
Acetaldehyde 2 NR NR Aldehydes 141-46-8
4-hydroxyhexanal 2 Yes Aldehydes 109710-36-3
Heptanal 2 NR NR Aldehydes 111-71-7
Hexanal 2 Yes Aldehydes 66-25-1
Octanal 2 Yes Aldehydes 124-13-0
2-butanone 4 Yes Ketones 78-93-3
3-hydroxy-2-butanone 4 Yes Ketones 513-86-0
Butyric acid 3 NR NR Acids 107-92-6
Acetic Acid 2 NR NR Acids 64-19-7
Propylcyclohexane 2 NR NR Alkanes 1678-92-8
Benzene 2 NR NR Aromatic compounds 71-43-2
Tetrachloroethylene 2 NR NR Haloalkanes 127-18-4
NR: Not Reported; CAS: Chemical abstracts service; LC: lung cancer; BPN: benign pulmonary nodules

Fig. 2 Risk of bias and applicability assessment according to the PROBAST

 



Page 15 of 18Su et al. BMC Pulmonary Medicine          (2024) 24:551 

representative of real-world patients with benign PNs 
and lung cancer [78]. To better inform clinical practices, 
future studies should carefully consider the heterogene-
ity of prediction effects and conduct model validations to 
develop predictive models that are of value to clinicians.

Limitations
This review summarized the current knowledge on 
exhaled VOC-based predictive models for distinguish-
ing between benign PNs and lung cancer. However, it 
was subject to certain limitations worth noting. First, 
there was substantial heterogeneity among the included 
studies in terms of the methods used for their establish-
ment, as well as for patient breath sample collection and 
analysis. Consequently, no quantitative meta-analysis has 
been conducted on the results of the studies. Second, all 
of the included studies were found to have a high risk of 
bias, likely caused by inappropriate inclusion criteria, the 
selection of predictors using univariate analyses, or a lack 
of indicators that could be used to evaluate calibration 
risk in the models. Third, most included studies in this 
review were conducted with cross-sectional study design, 
which conducted in patients with mid-/late-stage LC. 
The difference in performance of models based on breath 
VOCs among benign PNs and early LC demand further 
investigation with a large sample. In addition, eight of 
the studies were conducted in small groups, which may 
have limited the internal validity of their methods and 
the generalizability of their models to the general popula-
tion. Finally, studies that used sensor- and pattern-based 
recognition technologies without reporting on the vola-
tile biomarkers analyzed were not included in this review. 
Nevertheless, we believe that our report allows for a 
comprehensive review of exhaled VOC-based predictive 
models for distinguishing between benign PNs and lung 
cancer.

Conclusion
Exhaled 2-butanone, 3-hydroxy-2-butanone, and 
2-hydroxyacetaldehyde might be significant breath 
markers for distinguishing between benign PNs and 
lung cancer. Moreover, predictive models that incor-
porate multiple factors alongside exhaled VOCs, such 
as demographic characteristics and radiological signs, 
have shown superior levels of performance compared 
with those based solely on exhaled VOCs. These obser-
vations highlight a conceivable role for VOCs as moni-
toring tools for PNs risk. However, the role of exhaled 
VOC-based predictive models in routine clinical practice 
has not yet been established, owing to various constraints 
associated with breath collection and analysis methods, 
as well as a general lack of external validation. Further 
investigations are therefore warranted to standardize the 

sample collection and measurement techniques for this 
approach, as well as to enhance the reliability and gener-
alizability of such models.
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