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Abstract
Genome-wide association studies (GWAS) have identified genetic variants robustly associated with asthma. A 
potential near-term clinical application is to calculate polygenic risk score (PRS) to improve disease risk prediction. 
The value of PRS, as part of numerous multi-source variables used to define asthma, remains unclear. This study 
aims to evaluate PRS and define most informative thresholds in relation to conventional clinical and physiological 
criteria of asthma using a multivariate statistical method. Clinical and genome-wide genotyping data were 
obtained from the Quebec City Case-Control Asthma Cohort (QCCCAC), which is an independent cohort from 
previous GWAS. PRS was derived using LDpred2 and integrated with other asthma phenotypes by means of 
Principal Component Analysis with Optimal Scaling (PCAOS). PRS was considered using ‘ordinal level of scaling’ to 
account for non-linear information. In two dimensional PCAOS space, the first component delineated individuals 
with and without asthma, whereas the severity of asthma was discerned on the second component. The 
positioning of high vs. low PRS in this space matched the presence and absence of airway hyperresponsiveness, 
showing that PRS delineated cases and controls at the same extent as a positive bronchial challenge test. The top 
10% and the bottom 5% of the PRS were the most informative thresholds to define individuals at high and low 
genetic risk of asthma in this cohort. PRS used in a multivariate method offers a decision-making space similar to 
hyperresponsiveness in this cohort and highlights the most informative and asymmetrical thresholds to define high 
and low genetic risk of asthma.
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Introduction
Asthma is a heterogeneous disease that can be caused 
by a combination of genetic and environmental factors 
[1]. Major progress to identify genetic variants associ-
ated with asthma has been made during the past decade 
by genome-wide association studies (GWAS) [2, 3]. 
Individually, genetic loci associated with asthma have 
small effect sizes but collectively they can be grouped 
into a polygenic risk score (PRS) to delineate a subgroup 
of individuals at higher or lower genetic risk of asthma 
[4, 5]. A PRS is thus arguably the most near-term clini-
cal application of the new genetic knowledge derived 
from asthma GWAS. However, the clinical value of PRS 
in asthma, relative to conventional risk factors, remains 
largely unknown. In addition, the specific threshold to 
define an individual at high or low genetic risk remains to 
be established.

The Quebec City Case-Control Asthma Cohort 
(QCCCAC) is a new resource to study clinical and genetic 
factors implicated in asthma [6]. QCCCAC was not part 
of the previous GWAS on asthma and thus represents an 
independent dataset to evaluate the clinical value of PRS. 
QCCCAC consists of individuals well-characterized for 
asthma and related phenotypes including demographic 
characteristics, pulmonary functions, smoking status, 
blood biomarkers, allergies as well as genetics. QCCCAC 
was first analyzed to identify subgroups of clinically simi-
lar asthma individuals [6, 7]. However, no analysis of 
all the gathered variables was carried out, particularly 
between phenotypes and genome-wide genotyping data. 
In addition, the analysis of such data raises methodologi-
cal challenges: analyzing simultaneously a set of variables 
of heterogeneous nature (numeric, ordinal, nominal).

Principal Component Analysis (PCA) is a common sta-
tistical method to explore the relationships among vari-
ables gathered on a cohort [8, 9]. This method reduces the 
complex variable’s space into an optimally low-dimen-
sional space based on the first components. Limitations 
of PCA is that it can only be applied to numeric variables 
and assumes that relationships between variables and 
components are linear. However, clinical variables usu-
ally have different natures: some are numeric (e.g., body 
mass index), some are nominal with unordered catego-
ries (e.g., never, former, and current smoker) or ordinal 
with ordered categories (e.g., symptoms of a disease with 
no/light/moderate/severe symptoms). To deal with such 
complex data, various solutions were proposed in the 
statistical literature [10–14]. However, the integration of 
ordinal variables is usually done without further consid-
eration, either assumed to be numeric or nominal, none 
of these options being fully satisfactory. To deal with het-
erogeneous variables including ordinal ones, Optimal 
Scaling (OS) methods, based on variable’s quantification, 
were proposed by the Dutch School of data analysis [15, 

16]. OS aims to explore the relationships among numer-
ous variables in a reduced and interpretable space while 
taking into account their specific nature.

The aim of this study was to evaluate the value of PRS 
in the complex space of variables that define asthma and 
the best possible PRS thresholds in the QCCCAC. Sev-
eral statistical challenges have to be addressed: explore 
the relationships among all these variables in an interpre-
table (thus reduced) space, while taking into account the 
heterogeneous nature of the variables. Moreover, we took 
advantage of the ordinal level of scaling, and the resulting 
quantification to investigate the clinical value of PRS and 
define its most informative thresholds.

Materials and methods
Data
Data come from the Quebec City Case-Control Asthma 
Cohort (QCCCAC). It contains 1,585 French Canadian 
white subjects over 18 years of age with and without 
asthma. Details on data collection are given in [6]. The 
study protocol for the QCCCAC was approved by the 
Research Ethics Board of the Institut universitaire de car-
diologie et de pneumologie de Québec – Université Laval 
(#20273). All participating subjects signed an informed 
consent approved by the REB. Subjects are de-identified 
using a code number for confidentiality. Access to data is 
protected using the data management structure approved 
by the REB.

Among the available variables in the QCCCAC, four-
teen were selected, related to the demographic character-
istics (age, sex, body mass index), pulmonary functions 
(spirometry measurements: forced expiratory volume 
in one second (FEV1) and forced vital capacity (FVC); 
airway responsiveness to methacholine challenge mea-
sured using the 2-min tidal method [17]), smoking sta-
tus, blood biomarkers (blood cell counts of neutrophils 
and eosinophils), allergies (positive skin-prick test), 
polygenic risk score, asthma status (case/control; physi-
cian diagnosis based on clinical symptoms, lung function 
and airway responsiveness) and asthma severity symp-
toms according to the Canadian Asthma Guidelines [18] 
(Supplementary Table S1). These variables are of het-
erogeneous nature: eight are numeric, three are binary 
(nominal with two categories) and two are ordinal. These 
variables for n = 1,352 individuals (see the ‘Handling 
missing data’ section for the number of individuals) are 
described in Table 1. Clinical characteristics of QCCCAC 
are presented in Table  2, and differences between cases 
and controls were assessed with analysis of variance for 
numeric variables and with chi-square tests for categori-
cal variables.
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Genotyping and quality control
Genotyping of the QCCCAC was performed using the 
Illumina Global Screening Array (GSA) version 3 Bead-
Chip with the multi-disease (MD) drop-in panel. Qual-
ity controls (QC) were performed excluding low quality 
genetic variants with 10th percentile of Illumina GenCall 
score ≤ 0.1, call rate < 0.97%, Hardy-Weinberg equilibrium 
P < 1E-7, minor allele frequency (MAF) < 1%, or duplicate 
variants sharing the same base pair coordinate. Low qual-
ity DNA samples were also filtered out after consider-
ation for the genotype completion rate < 95%, genotypic 
and phenotypic sex mismatch, unexpected duplicates 
and genetic relatedness (first-degree relatives) evaluated 
by identity-by-state using PLINK, outliers based on the 
inbreeding coefficients (F > 10 standard deviation from 
the mean), and genetic background outliers detected by 
principal component analysis with HapMap subjects as 
population reference panel.

Development and coding strategy of the polygenic risk 
score
We are specifically interested in deciphering the value 
of an asthma-Polygenic Risk Score (PRS) beyond con-
ventional clinical features and expiratory airflow limita-
tions. The PRS is a numerical score which summarizes 
the effect of a large number of genetic variants on an 
individual’s phenotype (asthma here) [19]. It is calcu-
lated using genome-wide genotyping data and relevant 
Genome-Wide Association Study (GWAS) summary sta-
tistics (effect sizes). The GWAS identified several genetic 
variants, mostly single-nucleotide polymorphisms 
(SNPs), associated with asthma [2, 3]. The PRS is calcu-
lated as a weighted sum of the trait-associated alleles. To 
calculate the PRS, we applied the LDpred2 function with 
the automatic mode in the R package bigsnpr (version 
1.10.7). LDpred2 is based on a Bayesian method which 
aims at estimating the average posterior effect size using 
a linkage disequilibrium matrix and summary statistics 
by assuming a prior distribution on the real effect sizes 
[20]. Summary statistics were extracted from a European 

Table 1 Description of the selected variables of the Quebec City Case-Control Asthma Cohort (n = 1,352). Descriptive statistics are 
mean (standard deviation) for numeric variables or frequency (%) for nominal and ordinal variables
Name Nature Descriptive statistics Details
Sex Nominal (binary) Female F (61%)

Male M (39%)
Age Numeric Mean: 38.6 (16.3) Age at evaluation (year).
BMI Numeric Mean: 26.1 (5.4) Body mass index: weight of an individual 

divided by its squared height (kg/m2).
Smoking status Nominal (binary) Non-smoker NS (95%)

Smoker S (5%)
FVC (% predicted) Numeric Mean: 105.8 (16.6) Pulmonary function measured by spirometry: 

forced expiratory volume in 1 s (FEV1) and 
forced vital capacity (FVC), expressed as percent-
age of predicted value.

FEV1 (% predicted) Numeric Mean: 94.4 (19.6)

Eosinophils Numeric Mean: 0.03 (0.03) Blood cell counts for neutrophils and eosino-
phils (10e9.L− 1).Neutrophils Numeric Mean: 0.6 (0.09)

IgE Numeric Mean: 1.9 (0.6) Total serum immunoglobulin E: Measured with 
enzyme immunofluorometry (UI.mL− 1).

AHR Nominal (binary) Hyperresponsive AHR+ (56%)
Non-hyperresponsive
AHR- (44%)

Airway hyperresponsiveness: Measured using 
the 2-min tidal method [17] (the cut-off value of 
the test is 8 mg.mL− 1).

Nb allergens Numeric Mean: 7.0 (6.8) Skin-prick tests with 25 standard allergens 
performed to measure the allergic status of each 
individual. The number of positive responses 
(wheal diameter of at least 3 mm) is summed up.

Asthma symptoms Ordinal with 4 categories No symptoms (36.2%)
Light (32.6%)
Moderate (20.6%)
Severe (10.7%)

Severity of asthma determined according to 
the Canadian Asthma Guidelines [18]. Indi-
viduals with similar severity of symptoms were 
grouped (Supplementary Table S1).

Asthma status Nominal binary Asthma (63.8%)
Control (36.2%)

Asthma status confirmed by physicians (L.-P. 
Boulet and M. Laviolette) based on clinical symp-
toms, lung function and airway responsiveness.

PRS Discretized numeric vari-
able (ordinal)

PRS.1 (5%)
PRS.2 (5%)
…
PRS.20 (5%)

Polygenic risk score: A single value estimate 
of an individual’s genetic liability to a trait or 
disease [19].
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ancestry GWAS meta-analysis on asthma (19,954 cases 
and 107,715 controls) published by the Trans-National 
Asthma Genetic Consortium (TAGC) [3]. The statis-
tics reported by TAGC are the result of a meta-analysis 
of 66 GWAS where asthma status is based on physician 
diagnosis and standardized questionnaires. For the cur-
rent study, the PRS includes a total 931,818 genetic vari-
ants which are in common between our asthma GWAS 
in QCCCAC and the GWAS summary statistics from 
TAGC after restricting to HapMap3 variants as recom-
mended [20]. LDpred2 generates a genome-wide PRS 

and is not limited to genome-wide significant variants or 
preselected variants by the authors.

From a statistical point of view, the PRS is a numeric 
variable with a low value representing a low liability, and a 
high value representing a high liability to the disease, here 
asthma. In the following, this score is transformed into 
an ordinal variable using a quantile-based discretization. 
Several discretizations were tested and twenty categories 
were finally chosen as a compromise between interpreta-
tion and accuracy (see Results section). Accordingly, each 
ordered category corresponds to a fixed fraction (5%) of 

Table 2 Clinical characteristics of the Quebec City Case-Control Asthma Cohort (n = 1,352). Means and standard deviation of numeric 
variables and frequencies for categorical variables according to the asthma status. P-values are obtained from analysis of variance 
(numeric variables) or Chi-square test (categorical variables)

p-value Cases
(N = 863)

Controls
(N = 489)

Overall
(N = 1352)

Sex
 Female 0.484 522 (60.5%) 306 (62.6%) 828 (61.2%)
 Male 341 (39.5%) 183 (37.4%) 524 (38.8%)
Age
 Mean (SD) 0.001 39.7 (16.1) 36.8 (16.4) 38.6 (16.3)
 Median [Min, Max] 36.0 [18.0, 86.0] 30.0 [18.0, 77.0] 34.0 [18.0, 86.0]
BMI
 Mean (SD) 2.91e-09 26.8 (5.72) 25.0 (4.49) 26.1 (5.37)
 Median [Min, Max] 25.6 [14.9, 52.6] 24.2 [16.7, 43.1] 25.1 [14.9, 52.6]
Smoking status
 Non-smoker 0.834 817 (94.7%) 465 (95.1%) 1282 (94.8%)
 Smoker 46 (5.3%) 24 (4.9%) 70 (5.2%)
FVC
 Mean (SD) < 2.22e-16 102 (17.0) 112 (14.0) 106 (16.6)
 Median [Min, Max] 104 [55.0, 145] 111 [78.0, 165] 106 [55.0, 165]
FEV1
 Mean (SD) < 2.22e-16 87.7 (19.4) 106 (13.2) 94.4 (19.6)
 Median [Min, Max] 90.0 [25.0, 180] 106 [72.0, 159] 96.0 [25.0, 180]
Eosinophils
 Mean (SD) < 2.22e-16 0.0358 (0.0293) 0.0236 (0.0185) 0.0314 (0.0266)
 Median [Min, Max] 0.0280 [0, 0.320] 0.0180 [0, 0.138] 0.0240 [0, 0.320]
Neutrophils
 Mean (SD) 0.010 0.601 (0.0858) 0.588 (0.0864) 0.597 (0.0862)
 Median [Min, Max] 0.599 [0.290, 0.950] 0.597 [0.0100, 0.782] 0.598 [0.0100, 0.950]
IgE
 Mean (SD) < 2.22e-16 2.05 (0.600) 1.52 (0.548) 1.86 (0.634)
 Median [Min, Max] 2.03 [0.556, 4.13] 1.45 [0.690, 3.43] 1.85 [0.556, 4.13]
AHR
 Non hyperresponsive < 2.22e-16 136 (15.8%) 458 (93.7%) 594 (43.9%)
 Hyperresponsive 727 (84.2%) 31 (6.3%) 758 (56.1%)
Nb.allergies
 Mean (SD) < 2.22e-16 8.65 (6.96) 4.10 (5.42) 7.00 (6.81)
 Median [Min, Max] 8.00 [0, 24.0] 2.00 [0, 22.0] 5.00 [0, 24.0]
Asthma symptoms
 No symptom < 2.22e-16 0 (0%) 489 (100%) 489 (36.2%)
 Light 441 (51.1%) 0 (0%) 441 (32.6%)
 Moderate 278 (32.2%) 0 (0%) 278 (20.6%)
 Severe 144 (16.7%) 0 (0%) 144 (10.7%)
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the observed distribution function. They are labeled from 
‘PRS.1’ (lowest PRS) to ‘PRS.20’ (highest PRS). The per-
formance of the PRS was assessed by means of logistic 
regression explaining the asthma status by the PRS vari-
able (recoded in categories), and adjusted for covariates 
including age, sex and 10 ancestry-based principal com-
ponents. Ten is the number of principal components 
that we are using for genetic association studies in our 
European ancestry population [21, 22]. Body mass index 
(BMI) was also evaluated as a covariate considering the 
statistically significant difference between asthma cases 
and controls. The effect size estimates of PRS on asthma 
were highly similar in models with and without BMI and 
it was thus not kept in the final model.

Missing data
Out of the 1,585 individuals in the cohort, 233 were 
removed from the analysis as they have missing values for 
all the variables in a group, such as lung functions (FEV1, 
FVC) or biomarkers (eosinophils, neutrophils and IgE). 
These missing data cannot be reliably imputed. How-
ever, the remaining missing values (1% of the data) were 
considered at random and imputed with the K-nearest 
neighbors’ method (K = 5 by default, using the R package 
VIM [23]). Because of the heterogeneous nature of the 
variables, the general coefficient of similarity proposed 
by Gower [24] was considered to compute distances 
between individuals.

Multivariate statistical analysis (PCAOS)
The exploratory multivariate analysis with variables of 
heterogeneous nature was achieved by means of a Princi-
pal Component Analysis with Optimal Scaling (PCAOS) 
[16, 25, 26]. The PCAOS method achieved both dimen-
sionality reduction of data and quantification of the vari-
ables. This was performed using an Alternating Least 
Squares with Optimal Scaling (ALSOS) algorithm which 
alternates two steps: (1) quantification and (2) compo-
nents estimation, until the minimization of a least square 
loss function [27]. For the ‘optimal scaling step’ (1), each 
variable is quantified so that each category is associated 
with a numeric value (interested readers may refer to [28, 
29]). The ‘component estimation step’ (2) consisted of a 
Principal Components Analysis applied to the quantified 
variables.

Relationships among variables are studied by plotting 
variable loadings that represent correlations between 
quantified variables and components. Supplemen-
tary variables can be considered; they do not partici-
pate to component building but can be projected onto 
them. This variable-plot helps to interpret the graphi-
cal display of observations directly given by compo-
nents. The appropriate number of components to be 
interpreted is selected after computing models with 

different dimensions (e.g., from 1 to 6) and study gains 
in explained inertia for solutions with H + 1 components 
compared to H components. As categories from categor-
ical (nominal and ordinal) variables are quantified with a 
single numeric value, quantification plots with categories 
on the x-axis and single quantification on the y-axis can 
be drawn. These graphs allow to display non-linear rela-
tions between categorical variables and components.

The R package PCA.OS was developed and is available 
on GitHub (https:/ /github .com/ma rtin paries/PCA.OS). 
Sensitivity of the quantification for the multivariate anal-
ysis was performed on 1,000 bootstrapped data.

Results
QCCCAC
The clinical characteristics of cases and controls are 
described in Table 2. A total of 863 (64%) asthma cases 
and 489 (36%) controls were enrolled with an average 
age at recruitment of 38.6 years. All participants were 
of white European ancestry confirmed at genotyping. A 
larger majority were women (61%) and a small fraction 
were current-smokers (5%). Asthma patients were in 
large part atopic (81% with at least one positive skin prick 
test). As expected, lung function was lower in asthma 
(FVC p-value < 2.22e-16; FEV1 p-value < 2.22e-16) and 
the proportion of hyperresponsiveness was higher in 
cases compared to controls (AHR p-value < 2.22e-16). 
Blood eosinophils (p-value < 2.22e-16), neutrophils 
(p-value = 0.010) and IgE (p-value < 2.22e-16) were also 
higher in cases.

Polygenic risk score performance
The distribution of the PRS in asthma cases and con-
trols is illustrated in Supplementary Figure S1. Moreover, 
results from the logistic regression of the PRS (recoded 
as three categories: bottom 20%; 20-80% and top 20%, 
which is a common practice in the field [30]), explaining 
the asthma status are available in Supplementary Figure 
S2. Individuals in the top 20%  category had a 3.2-fold 
odds of asthma compared to the reference group consist-
ing of the 20% of individuals with the lowest PRS. The 
corresponding area under the receiver operating charac-
teristic curve was of 64.7% (CI 95%, 61.6-67.8%).

PCAOS
The PCAOS algorithm was performed on the variables 
described in Table 1. The ‘asthma severity symptoms’ was 
considered as supplementary information, thus 13 vari-
ables were used to build the model. For the PRS, several 
discretizations were tested and twenty categories were 
selected as a compromise between interpretation and 
accuracy (Supplementary Figure S3). The PCAOS algo-
rithm converged in four iterations for a model with two 
components. The first component explained 24.0% of the 

https://github.com/martinparies/PCA.OS
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variance of the quantified variables and the second com-
ponent 14.4% (for a total of 38% of variance explained) 
(Supplementary Figure S4).

Relationships among variables
The loadings of the quantified variables are represented 
in a two-dimensional space where their relationships can 
be highlighted (Fig.  1). Loadings values and correlation 
matrix between quantified variables are in Supplemen-
tary Table S2 and Figure S5. The first component (PC1) 
made it possible to differentiate individuals with (right-
hand side of PC1) and without (left-hand side of PC1) 
asthma. The non-asthma status (left-hand side of PC1) 
was associated with non-hyperresponsiveness to metha-
choline (94% of control individuals were AHR-), good 
pulmonary functions (high values of FEV1 and FVC) 
and lowest PRS categories (PRS.1 and to a lesser extent 
PRS.2 to PRS.4). The asthma status (right-hand side of 

PC1) was associated with hyperresponsiveness (85% of 
individuals with asthma were AHR+), high numbers of 
allergens, high values of IgE and eosinophils and high-
est PRS categories (PRS.19 and 20 and to a lesser extent 
PRS.18). Extreme PRS categories (PRS.19 and PRS.20 
categories, on the one hand, and PRS.1 category, on the 
other hand) were both linked to ‘asthma status’ and to 
‘AHR’. More specifically, the proportion of asthmatic and 
AHR + individuals increases with PRS categories; for low 
PRS category (PRS.1) 43% of individuals are asthmatic 
and 37% are AHR+, and for high PRS categories (PRS 19 
and PRS.20) 80% of individuals are asthmatic and 70% are 
AHR+.

The negative side of the second component (bottom-
hand side of PC2) showed that the oldest individuals with 
the highest BMI have higher values of neutrophils and 
lower eosinophils in circulation, as well as relatively low 
pulmonary capacities (FEV1, FVC) and low levels of IgE. 

Fig. 1 Graphical display of the 13 variables from the Quebec City Case-Control Asthma Cohort (n = 1,352) in the two dimensional PCAOS space (38% of 
total variance explained). Numeric variables are represented by vectors starting from the origin. Nominal and ordinal variables are represented by their 
categories (connected by a line for better readability). For ease of reading, only extreme PRS categories with the lower and higher values are plotted. AHR, 
airway hyperresponsiveness; BMI, body mass index; F, female; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; IgE, immunoglobu-
lin E; M, male; Nb.allergens, number of allergens; NS, non-smoker; PRS, polygenic risk score; S, smoker
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The positive side of PC2 (top-hand side of PC2) showed 
individuals with high numbers of allergens, IgE levels and 
eosinophils. In contrast to other variables, smoking and 
sex had a reduced link with asthma.

Polygenic risk score in multivariate analysis (PCAOS)
As mentioned, the numeric PRS was transformed into an 
ordinal variable to be able to highlight possible non-linear 
relationship between this variable and the others. Means 
and confidence intervals of the 1000 quantifications of 
the PRS variable, obtained with bootstrap simulation 
procedure, are illustrated in Fig. 2. Each confidence inter-
val contains 95% of the 1000 quantifications. The value 
attributed to each PRS category reflects the influence of 
that category in the construction of the components.

Confidence intervals show that the overall shape of the 
curve is constant. Moreover, the curve clearly reveals that 
the gap between two consecutive categories is not con-
stant, extreme categories having a much greater impact 
in seeking the PCAOS components. In practice, this 
highlights a non-linear relationship between PRS and 

other variables. Individuals with extreme values of PRS 
(in absolute values) exert more influence in building the 
components. In other words, the subset made of 5% of 
the individuals having the lowest PRS (Low risk = PRS.1) 
and the subset made of 10% of the individuals having 
the highest PRS (High risk = PRS.19, PRS.20) can be well 
differentiated into the two-dimensional space model 
(Fig. 1). Moreover, using logistic regression, it was found 
that high genetic risk individuals had 5.16 (CI 95% 2.69–
9.93) increased odds of asthma compared to low genetic 
risk individuals, as indicated in Supplementary Table S3.

Graphical display of the individuals
The 1,352 individuals are plotted according to their coor-
dinates on the two PCAOS components (Fig.  3). Each 
individual is colored according to its ‘asthma symptoms’ 
category (no/light/moderate/severe symptoms) consid-
ered as a supplementary variable in the analysis. Indi-
viduals with similar severity of symptoms are identifiable 
with more or less overlap. Control individuals (‘no symp-
tom’) are clearly positioned on the left-hand side of Fig. 3 

Fig. 2 Mean of PCAOS quantifications for the Polygenic Risk Score (PRS) variable obtained from bootstrapped data in the Quebec City Case-Control 
Asthma Cohort (n = 1,352). Each confidence interval contains 95% of the 1000 quantifications
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(low PC1 values) whereas individuals with asthma hav-
ing light to severe symptoms are positioned on the right-
hand side (high PC1 values). This is consistent with the 
location of the other variables (Fig. 1). Furthermore, indi-
viduals with light or moderate symptoms are separated 
from those with severe symptoms along the second com-
ponent (PC2). It turned out that individuals with severe 
asthma symptoms could be identified as older individuals 
with high BMI, while individuals with light and moderate 
symptoms seemed to have a higher number of positive 
allergens.

Discussion
In this study, we used a relevant multivariate statistical 
method, PCAOS, to assess and integrate PRS as part of 
key variables to define asthma. A model with two com-
ponents was interpreted with the first component delin-
eating patients with and without asthma. Interestingly, 
the same axis was associated with hyperresponsive-
ness and high PRS categories, suggesting that PRS has 
clinical value similar to hyperresponsiveness in defining 
asthma. In addition, the multivariate PCAOS approach 

highlighted the non-linear nature of PRS where the 
extremities of the PRS distribution are more influential in 
shaping the model. In the QCCCAC cohort, the model 
established the upper and lower boundaries of PRS at the 
top 10% for high genetic risk and the bottom 5% for low 
genetic risk. This indicates asymmetrical PRS thresholds 
to define low vs. high-genetic risk of asthma.

Asthma is a heterogeneous airways disease. The defini-
tion of asthma relies on a number of criteria document-
ing the variable extent of airflow limitation, respiratory 
symptoms, hyperresponsiveness, inflammation as well as 
allergy [31]. The diagnosis must be performed by expe-
rienced physicians on the basis of one or more criteria 
depending on whether they have access or not to com-
plex investigations. In our clinical research setting, we 
were able to assess asthma with gold standard methods. 
This had allowed us to study the relationships among 
clinical features of asthma, but most importantly evaluate 
how PRS performs in this complex mix of variables.

Interestingly, the PRS was found on the same dimen-
sion as asthma status and AHR. More specifically, 
high PRS categories were associated to two categories: 

Fig. 3 Factorial representation on the first two PCAOS components of the individuals colored according to their asthma symptoms severity (green = ‘no 
asthma’; blue = ‘light’; orange = ‘moderate’, red = ‘severe’). Categories of the ‘asthma symptoms severity’ are located as the average coordinates of individu-
als sharing the same category. Quebec City Case-Control Asthma Cohort (n = 1,352)
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‘asthma’ from the asthma status variable and hyperre-
sponsiveness to methacholine challenge. Thus, individu-
als with high values of PRS are prone to develop asthma 
characteristics such as hyperresponsiveness. Having 
asthma status and AHR on the same dimension is not 
surprising considering the weight of a positive bronchial 
challenge test on asthma diagnosis. However, to have 
PRS on the same dimension is novel and insightful. In 
fact, a genetic component to asthma has long been estab-
lished [1], but it is only recently that we can capture this 
component into a PRS. The PRS calculated in our cohort 
was derived from genetic variants associated with asthma 
in previous GWAS. It should be emphasized that the 
QCCCAC was not part of previous GWAS of asthma and 
thus represents an independent cohort. It may be consid-
ered intuitive to delineate asthma cases from controls in 
QCCCAC using a PRS aggregating the effects of genetic 
variants associated with asthma in previous GWAS, but 
to do so at the same scale as AHR is surprising consid-
ering the small fraction of the total heritability explained 
by genetic variants, e.g., the SNP-heritability was esti-
mated at 11.3% in UK Biobank [2]. These results are thus 
encouraging in terms of clinical application for the PRS 
considering foreseeable improvements in genetics of 
asthma and new methods to model polygenic architec-
ture [32]. Concerning the severity of asthma, it seems 
that a severe form of asthma is not associated with the 
current asthma PRS, but more to other characteristics of 
the individual such as age, BMI and blood neutrophils. 
Additional studies will be needed to evaluate PRS derived 
from genetic variants specifically associated with asthma 
severity.

The non-linear information provided by the PRS 
and the non-symmetrical thresholds to define low vs. 
high-genetic risk of asthma have implications for other 
complex diseases. A common practice in the field is to 
define high, intermediate, and low genetic risk groups, 
for instance, based on the bottom  20%, 20-80% and the 
top 20% of the PRS, respectively [30]. However, thresh-
olds vary widely across studies. For example, the first 
study showing the clinical utility of PRS in the field of 
lung cancer classified the genetic risk of individuals 
based on cutoffs at 5% and 95% [33]. There is a critical 
need to establish PRS thresholds that are clinically mean-
ingful and to integrate PRS within the specific context 
of each disease. The PCAOS method used in this study 
can potentially provide a data-driven method to obtain 
thresholds that are more clinically relevant. The non-
symmetrical thresholds obtained using this method is 
of particular interest and is likely to be suitable for other 
diseases. Studies will be needed on other diseases with 
multifactorial causes combining genetic and environ-
mental factors.

Several studies have developed PRS to predict an 
individual’s risk of developing asthma [4, 5, 34–36]. 
Results across studies are difficult to compare owing to 
the various methods to develop PRS and the metrics 
used to report the predictive properties of the PRS. In 
terms of diagnostic discrimination performance, our 
genome-wide PRS derived using the LDpred2 method 
in QCCCAC had similar AUC compared to the recent 
genome-wide PRS derived using the PRS-CS method in 
the white British subset of UK Biobank (AUC = 64.7% in 
QCCCAC vs. 62.3% UK Biobank) [34]. To the best of our 
knowledge, no previous PRS studies in asthma have tried 
to identify the most informative PRS thresholds to define 
individuals at high and low genetic risk of asthma. In this 
study, we demonstrated that informative PRS thresholds 
estimated from an asthma-specific multivariate model 
can improve risk stratification. Individuals with a PRS 
above the 10% of the distribution were 5.16 times (95% 
CI = 2.69–9.93) more likely to have asthma than those 
in the lower 5% of the distribution. In QCCCAC, these 
asymmetrical thresholds (lower 5% and upper 10%) iden-
tify the lower and upper subsets of individuals exerting 
the more influence in building the model components 
and differentiating the genetic risk as part of a complex 
set of asthma-related variables. Whether specific PRS 
thresholds for asthma can be established will require fur-
ther investigation in other populations.

This study has limitations, first the method and results 
obtained, such as the proposed threshold for high and 
low genetic risks, will need to be assessed and validated 
in other asthma cohorts. Replication may be difficult as 
asthma phenotyping, i.e., set of demographic/clinical/
genetic variables to define asthma, differs across sites. 
Second, the sample size of the QCCCAC is relatively 
small. However, individuals included in this cohort have 
been extensively phenotyped for asthma (demographic 
and clinical data, blood cell counts and IgE levels, allergy 
skin-prick tests as well as physiology evaluation by spi-
rometry and bronchial challenge test). As recently indi-
cated smaller studies with deep phenotyping will be 
equally important relative to historically large-scale 
GWAS for PRS development [37]. Third, GWAS sum-
mary statistics to develop the PRS were obtained from 
the European ancestry GWAS meta-analysis on asthma 
published by TAGC [3]. Larger GWAS on asthma have 
been reported [38, 39] and may improve the diagnos-
tic discrimination performance of the PRS. Continu-
ing progress in elucidating the genetics of asthma will 
improve the predictive accuracy of PRS and will require 
further investigation.

In conclusion, PCAOS in well-phenotyped asthma 
cohort makes it possible to study relationships among 
variables of different natures. The integration of the 
PRS as an ordinal variable highlights the non-linear 
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relationships between the genetics of individuals and 
other variables as well as the asymmetrical genetic risk 
thresholds. The application to the QCCCAC reveals that 
individuals at the lowest 5% and highest 10% asthma-
PRS percentile are at disproportionally lower and higher 
genetic risk of asthma.
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