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Abstract
Background The heterogeneity of chronic obstructive pulmonary disease (COPD) is increasingly recognized. To 
characterize the heterogeneity of COPD, we aimed to identify subtypes related to quantitative CT by using principal 
component analysis (PCA) and cluster analysis.

Methods The data of 1879 participants in the SPIROMICS study were obtained from the NHLBI Biologic Specimen 
and Data Repository Information Coordinating Center. A combination of PCA and k-means clustering was used to 
analyze the data from these participants in the SPIROMICS study. We randomly split the samples into training and 
validation sets. Clusters were evaluated for their relationship with acute exacerbation risk throughout the entire 
follow-up period. The results of the training set were confirmed in the validation set. To avoid sampling errors, we 
conducted 10 random sampling cycles. Normalized mutual information (NMI) was applied in every cycle to evaluate 
the stability of clustering.

Results We identified five clusters related to quantitative CT characterized as follows: (1) male-dominated low 
disease impact cluster, (2) obesity with relatively high symptom burden cluster, (3) airway wall lesion cluster, (4) lung 
upper region zone-predominant emphysema cluster, (5) severe emphysema cluster. There are significant differences 
in acute exacerbation risk among these five clusters.

Conclusions Cluster analysis identified 5 clusters related to quantitative CT of all participants in the SPIROMICS 
cohort with significant differences in baseline characteristics and acute exacerbation risk. The stability of clustering 
results was validated through NMI in 10 sampling cycles. In addition, dimensionality reduction results showed high 
reproducibility in different studies.
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Background
Chronic obstructive pulmonary disease (COPD) is now 
one of the top three causes of death worldwide and 
most of these deaths occur in low-income and middle-
income countries [1, 2]. At present, the diagnosis of 
COPD, which is most widely used, is confirmed based 
on FEV1/FVC, and the severity of the disease is classi-
fied based on the FEV1% predicted [3]. However, GOLD 
2024 describes COPD as a heterogeneous lung condition 
characterized by chronic respiratory symptoms result-
ing from abnormalities of the airways and/or alveoli [4]. 
This definition emphasizes the heterogeneity of COPD 
and suggests that abnormal lung changes in early COPD 
are a continuous process that may also exist in subjects 
who have not yet experienced standard airflow obstruc-
tion, such as the Pre COPD or PRISM population [5–8]. 
In fact, this method of diagnosis and classification based 
on the degree of airflow obstruction has led to improved 
diagnosis and treatment of the disease [9, 10], but it can 
also lead to significant overlap between the different dis-
ease features and the proposed subtypes, which may not 
reflect phenotypic heterogeneity. With the increasing 
availability of CT imaging, CT-based measurements are 
becoming a reliable and objective method for assessing 
the risk of acute exacerbations in COPD [11]. Therefore, 
while maintaining the diagnostic approach for COPD, 
researchers have continued to verify multiple subtypes 
by integrating CT images with clinical variables [12–14], 
which have important consequences for clinical man-
agement, such as asthma-COPD overlap [15] and upper 
lobe-predominant emphysema [16].

With the increasing number of measurements related 
to COPD, researchers have applied unsupervised algo-
rithms to discover COPD-related subtypes [17]. The 
advantage of this approach is that it can uncover complex 
relationships among diverse variables, thereby identify-
ing potential subtypes. The two main types of unsuper-
vised machine learning algorithms are the clustering and 
dimensionality reduction algorithms [12, 18]. Disease 
axes, which are generated by specific algorithms such 
as dimensionality reduction, represent continuous tra-
jectories of disease phenotypic features [17, 19]. Unlike 
discrete clusters that group individuals into distinct sub-
types, disease axes provide continuous measures that are 
composed of many contributing variables, making them 
more suitable for situations where the variable set follows 
a continuous distribution [18, 20]. Principal component 
analysis (PCA) is a widely used technique for reduc-
ing dimensionality by generating linear combinations of 
features that maximally explain the observed population 
variance and thus can be applied to define disease axes. 
However, because unsupervised algorithms are purely 
data-driven and do not rely on predefined labels, the 
reproducibility and stability of the obtained clusters or 

disease axes in different studies have not been extensively 
recognized.

Therefore, to identify subtypes related to quantita-
tive CT and explore the reproducibility of disease axes 
and clusters, we employed principal component analysis 
(PCA) and clustering on clinical data obtained from the 
SPIROMICS cohort. Additionally, we assessed the repro-
ducibility of the obtained disease axes and clusters.

Methods
Research data
The data analysis in this study utilized the open-access 
SPIROMICS (Subpopulations and Intermediate Mark-
ers in COPD Study) (Clinical Trial Registry: ClinicalTri-
als.gov, Identifier: NCT01969344, registered on October 
25, 2013) dataset from the NHLBI Biologic Specimen 
and Data Repository Information Coordinating Center. 
The SPIROMICS study has previously been described in 
detail [21]. Briefly, between November 2011 and January 
2015, 2982 participants, aged 40–80 years, were enrolled 
in a multicenter prospective observational study funded 
by the NIH [21] and distributed across four enrollment 
strata: never-smokers, smokers without COPD, smokers 
with mild or moderate COPD, and smokers with severe 
COPD. We excluded individuals with missing data (Sup-
plementary Data: Fig. S1). The median follow-up period 
for the 1879 subjects in this study was 1611 days.

Sample splitting
To evaluate the effectiveness of clustering solutions, the 
SPIROMICS data were randomly split into equally sized 
training and validation sets. All subsequent model build-
ing was performed on the training data. The validation 
set was used to validate clustering characteristics.

Dimensionality reduction
To understand the phenotypic spectrum of COPD, we 
applied PCA to standardized individual feature, spi-
rometric data and CT quantitative data from the SPI-
ROMICS training set. (Supplementary Data: Table S1). 
We aimed to include enough principal components in the 
clustering analysis to account for a sufficient proportion 
of the variance. However, since the explained variance 
ratios for principal component 9 and those thereafter 
were similar and relatively low, we chose to retain the 
first eight principal components. (Supplementary Data: 
Fig. S2)

To better interpret the principal components, we 
applied varimax rotation to the first 8 principal compo-
nents using the method of maximizing variance. Vari-
max rotation does not alter the relative positions of 
data points, and therefore does not affect the results of 
k-means clustering. The principal component scores 
were calculated by multiplying the rotated principal 
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component weights with the standardized original vari-
ables and summing.

Identifying clusters
We chose the k-means clustering method for this 
research, because it allows to verify the clustering results 
in the validation set by using the centers of the identified 
clusters. Then, we selected k = 5 as the optimal number 
of clusters, based on the greatest differentiation in clini-
cal characteristics and acute exacerbation risk among the 
clusters. We used logistic regression to calculate the odds 
ratios (OR) of exacerbation for each subtype. To validate 
the significance of the subtyping, we adjusted the GOLD 
stage and calculated the OR of exacerbation for each 
cluster. Cox regression analysis was performed to esti-
mate risk of exacerbation and adjusted for race.

Clusters validation
We computed the principal component scores for the 
validation set using the principal component score for-
mulas derived from the training set. Based on the centers 
learned by the k-means algorithm in the training sample, 
we assigned the validation set to the nearest cluster cen-
ter and allocated clusters in the validation sample accord-
ingly. We utilized Wilcoxon rank sum tests to examine 
the differences in clustering features between the train-
ing and validation samples. K-means clustering was 
performed using the k-means function. The PCA was 
conducted using the psych package in R language. All 
statistical methods were executed in R language 4.3.2. 
Overview of methods is shown in Fig. 1.

Cross-validation
To avoid sampling errors, we conducted 10 random sam-
pling cycles. In each cycle, cross validation was applied 
to each cycle (Details in Supplementary Data). We used 
normalized mutual information (NMI) to compare the 
two clustering solutions for each independent dataset.

Results
The characteristics of the training and validation samples 
are shown in Supplementary Data: Table S2, demonstrat-
ing their comparability.

The PCA with varimax rotation identified 8 principal 
components, explaining 73% of the variance in all vari-
ables. Detailed PCA loadings are shown in Fig.  2. PCA 
loadings represent the correlation between the origi-
nal variables and the principal components, indicating 
how much each variable contributes to each compo-
nent. Higher loadings reflect stronger contributions. We 
defined disease axes using these principal component 
scores.

Rotated principal component 1 (RC1), high represent-
ing by quantitative CT measurements of emphysema 
and air trapping, was interpreted as representing a mul-
tidimensional air trapping disease axis. Rotated principal 
component 2 (RC2), high representing by lung function 
measurement representation, was interpreted as a nega-
tive lung ventilation function disease axis. Rotated prin-
cipal component 3 (RC3), mostly correlated with airway 
wall area percentages (loading scores 0.44 to 0.70), was 
interpreted as an airway wall lesion disease axis. Rotated 
principal component 4 (RC4), mostly correlated with 
high Pi10 index (loading scores 0.62 to 0.96), was inter-
preted as an airway wall thickness disease axis. Pi10 
was calculated by regressing the square-root wall area 
on internal perimeter of included airways to predict the 
square-root wall area of a single hypothetical airway with 
internal perimeter of 10  mm. Notably, airway wall area 
percentages and Pi10 appear as independent components 
in the principal component analysis, representing prin-
cipal component 3 and principal component 4, respec-
tively, with low correlation between the two variables. 
This indicates that changes in Pi10 and airway wall area 
percentages are not linearly related in the progression of 
COPD. Rotated principal component 5 (RC5) to rotated 
principal component 8 (RC8) were not explained due to 
their low variance contribution.

Fig. 1 Overview of clustering, principal component analysis, and validation
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Fig. 2 Principal component analysis description
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Through PCA and cluster analysis, we identified five 
clusters and ranked them according to the acute exac-
erbation rate, with the lowest exacerbation rate cluster 
labeled as cluster 1.

Cluster 1: male-dominated low disease impact
Cluster 1 represents 26% of the SPIROMICS training 
sample and is characterised by the highest predicted 
FVC% and FEV1%, the lowest CAT score and mainly 
composed of males (Male individuals account for 80% 
of this cluster) (Table 1). The majority of individuals in 
cluster 1 is primarily composed of control subjects and 
individuals classified as GOLD stage 0 and GOLD stage 
1. (Table 2)

In terms of quantitative CT data, this cluster exhibits 
the highest segmental airway wall area, the highest lumen 
area and total bronchial area compared to other clusters, 
while simultaneously having the lowest airway wall area 
percentage.

Cluster 2: obesity with relatively high symptom burden
Cluster 2 represents 14% of the SPIROMICS training 
sample and characterised by the highest BMI among the 
5 clusters and a relatively high burden of COPD symp-
toms (CAT score greater than 10) (Table 1). This cluster 

mainly includes members of GOLD stage 0, GOLD stage 
2 and the control group. (Table 2)

Compared to cluster 1, this cluster has a decrease in 
FEV1% predicted by 0.09. However, due to a decrease in 
predicted FVC% predicted of 0.14, the FEV1/FVC ratio of 
cluster 2 increases by 0.05. Additionally, this cluster has 
the lowest level of emphysema among the 5 clusters, with 
the skewness and kurtosis of the lung density histogram 
being the lowest among the 5 clusters, which may suggest 
a possible association with pulmonary fibrosis [22, 23]. 
Female individuals account for 67% of this cluster.

Cluster 3: airway wall lesion
Cluster 3 represents 37% of the SPIROMICS training 
sample and characterised by the lowest airway wall area 
among the five clusters. However, the percentage of air-
way wall area in this cluster is relatively high, suggesting 
that the increase rate of airway wall area towards the air-
way lumen exceeds the decrease rate of airway wall area, 
resulting in a net increase in wall area percent (Table 1). 
This cluster mainly includes members of GOLD stage 
0, GOLD stage 1, GOLD stage 2 and GOLD stage 3 
(Table 2). Females represent 59% of this cluster.

Table 1 Cluster characteristics in training set, k = 5
Characteristic Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
N 242 130 343 113 111
Age 64.00 (56.00, 68.00) 54.00 (49.00, 60.00) 67.00 (62.00, 72.00) 65.00 (58.00, 71.00) 64.00 (59.00, 70.00)
BMI 27.00 (25.00, 30.00) 31.00 (27.00, 35.00) 29.00 (25.00, 33.00) 25.00 (22.00, 29.00) 25.00 (22.00, 27.50)
GENDER % female 48 (20%) 87 (67%) 203 (59%) 57 (50%) 35 (32%)
CAT 7.00 (3.00, 13.00) 15.00 (7.00, 22.00) 12.00 (7.00, 18.00) 16.00 (10.00, 22.00) 17.00 (12.00, 24.00)
BODE index 0.00 (0.00, 0.00) 0.00 (0.00, 1.00) 1.00 (0.00, 2.00) 2.00 (1.00, 4.00) 3.00 (2.00, 5.00)
FEV1/FVC 0.76 (0.69, 0.81) 0.81 (0.74, 0.85) 0.64 (0.56, 0.72) 0.50 (0.41, 0.60) 0.39 (0.34, 0.45)
FEV1% predicted 0.98 (0.89, 1.08) 0.89 (0.76, 0.96) * 0.74 (0.60, 0.86) 0.56 (0.42, 0.72) 0.40 (0.33, 0.51)
FVC% predicted 1.02 (0.93, 1.12) 0.88 (0.80, 0.95) 0.90 (0.80, 0.99) 0.87 (0.74, 0.99) 0.83 (0.72, 0.96)
Insp_LAA950_total 2.19 (1.17, 4.65) 0.36 (0.26, 0.60) 2.13 (0.98, 4.75) 19.16 (13.21, 28.45) 18.81 (11.61, 26.52)
Exp_density StdDev 173.74 (166.82, 181.98) 173.48 (166.00, 184.30) 169.18 (162.88, 178.78) 184.23 (172.87, 196.72) 163.24 (153.40, 172.22)
Exp_skewness 1.90 (1.66, 2.16) 1.61 (1.37, 1.86) 2.10 (1.85, 2.40) 2.11 (1.62, 2.38) 2.62 (2.37, 2.92)
Exp_kurtosis 3.53 (2.02, 5.39) 2.43 (1.12, 3.88) 4.52 (2.95, 6.11) 3.95 (2.03, 6.26) 7.46 (5.22, 10.04)
Exp_LAA856_TLU 7.10 (2.44, 15.53) 1.42 (0.42, 5.40) 11.92 (5.05, 26.22) 57.35 (36.29, 70.04) 50.92 (38.98, 63.43)
Exp_LAA856_TLL 6.26 (2.62, 14.95) 1.49 (0.41, 3.60) 9.55 (4.22, 21.58) 18.19 (6.39, 29.06) 55.29 (43.78, 65.93)
Exp_LAA856_TRU 6.03 (1.83, 13.96) 1.19 (0.33, 4.69) 10.48 (3.80, 27.27) 64.90 (47.74, 76.56) 48.31 (33.34, 60.02) *
Exp_LAA856_TRL 10.42 (4.50, 19.29) 2.81 (1.10, 5.30) 16.30 (6.80, 27.33) 28.96 (15.32, 41.83) 58.67 (49.20, 68.65)
Wall area† 39.36 (36.15, 43.29) * 32.99 (29.58, 37.14) 31.52 (28.45, 35.45) 32.71 (29.55, 37.46) 33.02 (29.81, 36.69)
Wall area percent† 0.58 (0.56, 0.59) 0.60 (0.58, 0.62) 0.61 (0.60, 0.63) 0.60 (0.58, 0.62) 0.61 (0.59, 0.63)
Lumen area† 30.01 (26.36, 33.67) * 22.77 (19.21, 26.71) 21.01 (18.37, 23.76) 23.82 (19.85, 28.11) 22.06 (18.71, 26.03)
Total bronchial area† 69.35 (62.78, 76.43) * 56.22 (48.83, 63.69) 52.71 (47.95, 58.82) 56.89 (50.55, 65.48) 55.29 (48.20, 61.69)
Notes: values are median (IQR) unless otherwise noted

*: p Value comparing mean in training to validation < 0.05 for Wilcoxon rank sum tests

†: Each subject’s value is replaced by the mean value for 19 bronchi of lung segments

Abbreviations: exp, expiratory; insp, inspiratory; wall area = total bronchial area - lumen area; wall area percent = wall area / total bronchial area; TLU, upper left third 
of the lung; TLL, lower left third of the lung; TRU, upper right third of the lung; TRL, lower right third of the lung; kurtosis, kurtosis of lung density histogram; skewness, 
skewness of lung density histogram; StdDev, standard deviation of mean lung density; BMI, body mass index; HU, Hounsfield units



Page 6 of 8Peng et al. BMC Pulmonary Medicine           (2025) 25:92 

Cluster 4: lung upper region zone-predominant 
emphysema
Cluster 4 represents 12% of the SPIROMICS training 
sample and characterised by emphysema with marked 
upper zone-predominance. Air trapping in the upper 
regions are more severe compared to the lower regions, 
with the area of air trapping in the upper regions being 
more than twice that of the lower regions. Furthermore, 
this cluster exhibits the highest standard deviation in CT 
values, which may be related to the predominance of air 
trapping in the upper lung area of the cluster (Table 1). 
This cluster mainly includes members of GOLD stage 2 
and GOLD stage 3. Females represent 50% of this cluster.

Cluster 5: severe emphysema
This cluster represents 12% of the training sample and is 
characterized by severe emphysema, airflow obstruction 
and the highest CAT scores. This cluster has the lowest 
BMI among the clusters and predominantly consists of 
males (Table 1). This cluster mainly includes members of 
GOLD stage 2, GOLD stage 3 and GOLD stage 4. Female 
individuals account for 32% of this cluster.

Validation of the clusters
All displayed baseline characteristics of the clusters have 
undergone Wilcoxon rank sum tests between the train-
ing and validation sets. Values marked with * indicate 
Wilcoxon rank sum tests p-values less than 0.05. The 
similarity of clustering features between the training and 
validation samples suggests that clustering can be reli-
ably reproduced in separate data samples. The cluster-
ing characteristics of the validation set can be seen in 
Supplementary Data: Table S3. In cross validation, the 
results showed that the median NMI value was 0.66 for 
both the training and validation sets, which confirms 

the reproducibility of clustering results. (Supplementary 
Data: Fig. S3)

Acute exacerbation risk of each cluster
The exacerbation rate across the follow-up period in 
each cluster is shown in Table 2. Unless stated otherwise, 
the exacerbations mentioned in this study include mild, 
moderate, and severe exacerbation. Using cluster 1 as a 
reference, the hazards ratio and OR of acute exacerbation 
for other clusters are shown in Table 2.

To determine whether the association observed with 
these clusters and acute exacerbation risk was driven by 
severity of airflow obstruction, we repeated the cluster 
association tests adjusting for GOLD stage. The associa-
tions with exacerbation remained significant (p < 0.01). 
This suggests that the discovered clusters provide infor-
mation on the risk of acute exacerbation independent 
from COPD severity as defined by GOLD.

Discussion
By employing PCA and cluster analysis on clinical data 
obtained from the SPIROMICS cohort, we distinguished 
5 clusters as follows: (1) male-dominated low disease 
impact cluster, (2) obesity with relative high symptom 
burden cluster, (3) airway wall lesion cluster, (4) lung 
upper region zone-predominant emphysema, (5) severe 
emphysema cluster. The clinical characteristics and acute 
exacerbation risk of these clusters were validated through 
validation set.

This analysis reveals novel insights into COPD sub-
types, particularly describing two clusters: the male-
dominated low disease impact cluster and the airway wall 
lesion cluster, which have not been extensively described 
in prior research. Several factors contributed to the iden-
tification of these subtypes: (1) this study includes the 

Table 2 The composition of COPD stages and exacerbation risk for each cluster
Training Validation
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

GOLD_STAGE
 0 131 (54%) 83 (64%) 83 (24%) 6 (5.3%) 1 (0.9%) 123 (50%) 82 (66%) 84 (23%) 4 (3.8%) 0 (0%)
 1 63 (26%) 2 (1.5%) 57 (17%) 11 (9.7%) 1 (0.9%) 59 (24%) 5 (4.0%) 60 (17%) 13 (12%) 2 (1.9%)
 2 18 (7.4%) 20 (15%) 142 (41%) 47 (42%) 29 (26%) 35 (14%) 18 (14%) 158 (44%) 37 (35%) 22 (21%)
 3 0 (0%) 6 (4.6%) 46 (13%) 41 (36%) 60 (54%) 0 (0%) 0 (0%) 33 (9.2%) 35 (33%) 50 (49%)
 4 0 (0%) 0 (0%) 4 (1.2%) 8 (7.1%) 20 (18%) 0 (0%) 0 (0%) 5 (1.4%) 17 (16%) 29 (28%)
Unknown† 30 (12%) 19 (15%) 11 (3.2%) 0 (0%) 0 (0%) 31 (13%) 20 (16%) 18 (5.0%) 0 (0%) 0 (0%)
Exacerbation (%) 52 (21%) 47 (36%) 155 (45%) 76 (67%) 88 (79%) 56 (23%) 43 (34%) 182 (51%) 72 (68%) 79 (77%)
Exacerbation (OR) 1 2.069** 3.012*** 7.505*** 13.980*** 1 1.798* 3.545*** 7.261*** 11.286***
Exacerbation (Adjusted OR) 1 2.140** 1.951** 3.353*** 4.621*** 1 2.016** 2.252*** 2.711** 3.091**
Hazards ratio 1 1.942** 2.493*** 4.906*** 6.936*** 1 1.620* 2.662*** 4.375*** 5.680***
Notes: GOLD unknown†: control group with less than 1 pack-year

***: p < 0.001, **: p < 0.01, *: p < 0.05

OR (odds ratio): calculated from logistic regression

Adjusted OR (adjusted odds ratio): calculated from logistic regression, adjusting for GOLD stage

hazards ratio: calculated from cox proportional hazards model, cox regression analysis was adjusted for race
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most comprehensive set of clinical variables compared 
to previous COPD clustering studies, encompassing lung 
function tests, emphysema, airway wall thickness, and 
individual characteristic variables. (2) our study popula-
tion also includes subjects with no airflow obstruction. 
Our work also addresses the issue of reproducibility in 
clustering analysis across independent samples derived 
from the same cohort. Furthermore, we evaluated 
whether the correlation of clinical characteristics within 
the clusters matched those observed in previous studies, 
thereby enhancing the credibility of the clustering.

This study offers a novel insight into airway wall pro-
gression in COPD, suggesting that airway wall thickness 
alone may not accurately reflect airway pathology. In the 
male-dominated low disease impact cluster, which has 
the highest airway wall area, the exacerbation rate during 
follow-up was the lowest. Conversely, in the airway wall 
lesion cluster, despite having the lowest airway wall area, 
it also has the smallest total bronchial wall and lumen 
areas and a higher exacerbation rate than clusters 1 and 
2. This indicates that COPD progression may involve not 
only thickening of the airway wall towards the lumen 
but also destruction of the airway wall, manifested as a 
decrease in total bronchial wall area.

The marked gender differences between clusters are of 
particular interest because gender was not included in 
the dimension reduction process in machine learning as 
an original variable. However, the variability caused by 
gender differences was captured by other selected vari-
ables, such as FEV1, indicators related to airway wall 
thickness and so on [24, 25].

This study further validates previous discoveries con-
cerning subtypes. Firstly, Peter J. Castaldi et al. identi-
fied a subtype characterized by emphysema in the upper 
lung region using k-means clustering in the COPDGene 
cohort, which closely aligns with our cluster 4. However, 
our cluster 4 in the training set exhibits higher airflow 
obstruction levels compared to theirs [13]. Secondly, we 
identified a cluster characterized by obesity with a high 
symptom burden, similar to the PRISM cohort. This 
cluster shows a decrease in FEV1% predicted compared 
to cluster 1, but due to a synchronous decrease in FVC% 
predicted, it has the highest FEV1/FVC ratio among the 5 
clusters. Our results partially confirm PRISM’s features, 
such as higher BMI and higher proportion of females [8, 
26]. Moreover, this cluster is primarily composed of indi-
viduals without COPD, with 64% of the patients being 
classified as GOLD stage 0. Thirdly, subtypes related to 
severe emphysema have been proposed in previous stud-
ies, and our study proposes a severe emphysema subtype 
with high airflow obstruction and high airway wall thick-
ness [13, 14].

Additionally, this study confirms that the disease 
axis exhibits relatively high reproducibility in different 

studies. Compared with the factor loading done by KIN-
NEY et al., where their factor 1 predominantly repre-
sented quantitative CT measures of air trapping and 
emphysema, and factor 2 predominantly represented 
lung function test measures, our study exhibits the simi-
lar results [19]. In addition, rotated principal component 
3 (RC3) and rotated principal component 4 (RC4) in our 
study differ from factors 3 and 4 identified by Kinney et 
al. This discrepancy is attributed to the inclusion of a 
larger number of Pi10 and wall area percent indicators in 
our study.

This work has several limitations. Firstly, the study was 
based on a single cohort, and the external validity of the 
identified COPD subtypes needs to be confirmed in other 
independent datasets. Validation in different populations, 
regions, and clinical settings is crucial to assess whether 
the identified subtypes and their associated exacerba-
tion risks are generalizable. Secondly, due to missing 
data, we excluded subjects with incomplete information. 
Although our sample size remains large and potential 
bias is minimal, this exclusion may still introduce some 
bias compared to the overall cohort.

Conclusion
In summary, through the utilization of PCA and k-means 
cluster analysis, we identified five clusters and their sta-
bility was validated in both the validation set and cross-
validation. This will contribute to further describing and 
studying subtypes related to quantitative CT. In addition, 
this method shows high repeatability in independent data 
samples derived from the same cohort, providing a fea-
sible approach for future research to address the issue 
of subtype repeatability obtained through unsupervised 
learning.
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