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Abstract
Background  In hospitalized patients, inadequate antibiotic dosage leading to bacterial resistance and increased 
antimicrobial use intensity due to overexposure to antibiotics are common problems. In the present study, we 
constructed a machine learning model based on patients’ clinical information to predict the clinical effectiveness of 
Piperacillin-tazobactam (TZP) (4:1) in treating bacterial lower respiratory tract infections (LRTIs), to assist clinicians in 
making better clinical decisions.

Methods  We collected data from patients diagnosed with LRTIs or equivalent diagnoses admitted to the 
Department of Pulmonary and Critical Care Medicine at Shanghai Pudong Hospital, Shanghai, between January 
1, 2021, and July 31, 2023. A total of 26 relevant clinical features were extracted from this cohort. Following data 
preprocessing, we trained four models: Logistic Regression, Random Forest, Support Vector Machine, and Gaussian 
Naive Bayes. The dataset was split into training and test sets using a 7:3 ratio. The top-performing models, as 
determined by Receiver Operating Characteristic (ROC)-Area Under the Curve (AUC) on the independent test set, 
were subsequently ensembled. Ensemble model (EL) performance was evaluated using bootstrap resampling on the 
training set and ROC-AUC, recall, accuracy, precision, F1-score, and log loss on an independent test set. The optimal 
model was then deployed as a web application for clinical outcome prediction.

Results  A total of 1,314 patients primarily treated with TZP as initial empiric antibiotic therapy were enrolled in 
the analysis. The success group comprised 995 patients (75.7%), while the failure group consisted of 319 patients 
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Introduction
Lower respiratory tract infections (LRTIs), clinically 
diagnosed as pneumonia or bronchiolitis in the Global 
Burden of Diseases (GBD) Study, stand as a significant 
global cause of mortality [1]. In 2019, around 2.49 million 
deaths were attributed to LRTIs globally, positioning it as 
the fourth foremost cause of death across all age groups 
[2]. It has been proved that LRTIs are also the main cause 
of death from infectious diseases worldwide [3]. In China, 
the major pathogens responsible for LRTIs are bacteria 
including Streptococcus pneumoniae, Haemophilus influ-
enzae, Acinetobacter baumannii, Klebsiella pneumoniae, 
Escherichia coli, and Pseudomonas aeruginosa, etc [4–6].

Due to the limitations of traditional pathogen detection 
methods, which cannot meet clinical needs and lack suf-
ficient head-to-head clinical trial support, clinical treat-
ment of LRTIs is mostly empirical [7]. In the empirical 
treatment of bacterial infections, the combination of pen-
icillin and β-lactamase inhibitor is one of the preferred 
antimicrobial treatments for respiratory tract infections 
requiring hospitalization but not intensive care unit 
(ICU) admission [5, 6]. Piperacillin-tazobactam (TZP) 
is a powerful antibiotic combining a β-lactam antibiotic 
(piperacillin) with a β-lactamase inhibitor (tazobactam) 
and has been extensively used in the empirical treatment 
of hospitalized patients with LRTIs due to its broad spec-
trum of antibacterial activity, higher safety and efficacy, 
effectively targeting a majority of the bacteria associated 
with these infections including gram-positive, anaero-
bic, and gram-negative types [8, 9]. Notably, it remains 
effective against many multidrug-resistant strains of 
Pseudomonas aeruginosa and Enterobacteriaceae spe-
cies [10, 11]. However, TZP still has a certain failure rate 
in clinical practice, and some patients have to upgrade 
to higher-level antibiotics, such as carbapenems, tigecy-
cline. Therefore, if the effective response of TZP can be 
predicted before empirical treatment of LRTIs, it will be 
of great help to clinicians in clinical decision-making, 

and patients who do not respond to TZP treatment can 
be identified, and early intensive treatment can be carried 
out for these patients.

Previous studies have shown that the treatment failure 
is undoubtedly associated with factors such as bacterial 
spectrum beyond that of TZP, drug-resistant strains, 
and undetected non-bacterial pathogens (such as myco-
plasma pneumoniae, viruses) [12] and limited dosage of 
piperacillin due to the fixed ratio with tazobactam (8:1 
or 4:1) (4:1 or 8:1 refers to the fixed ratio of piperacillin 
to tazobactam) [13]. Additionally, other factors such as 
gender, age, weight, concurrent medication information, 
and infection related characteristics of patients can also 
affect the treatment effectiveness of LRTIs [14–17]. How-
ever, on the one hand, due to the large amount of existing 
patient data, it is difficult to clarify effective relationships 
between them. On the other hand, the accuracy of these 
factors as predictive indictors for TZP is not yet high, 
and they cannot provide clinicians with enough informa-
tion to accurately identify non-responders to TZP. There-
fore, it is necessary to find effective strategies to predict 
the efficacy of TZP so as to help clinicians make clinical 
decisions.

At present, Artificial Intelligence (AI) has been widely 
used in medical image analysis, auxiliary diagnosis, 
clinical trials and other fields, which has significantly 
improved the quality and efficiency of medical care [18, 
19]. Machine Learning (ML), as one of the typical repre-
sentatives of data-driven AI methods, can process exten-
sive, complex, and heterogeneous datasets, revealing 
subtle patterns and associations that may be overlooked 
by conventional statistical approaches, which facilitates 
the identification of non-linear relationships and interac-
tions among variables, leading to more detailed and com-
plex insights [20, 21]. As modern hospital information 
systems gain popularity and computing power contin-
ues to improve, the integration of ML and medicine has 
become increasingly seamless [22].

(24.3%). We constructed an ensemble learning model based on the Logistic Regression, Support Vector Machine and 
Random Forest models, which showed better overall performance. The EL model demonstrated robust performance 
on an independent test set, exhibiting a ROC-AUC of 0.69, a recall of 0.69, an accuracy of 0.64, a precision of 0.40, a 
F1-score of 0.50, and a log loss of 0.66. A corresponding web application was then developed and made available at 
http://106.12.146.54:1020/.

Conclusions  In this study, we successfully developed and validated an EL model that effectively predicts the 
clinical effectiveness of TZP (4:1) in treating bacterial LRTIs. The model achieved a balanced performance across key 
evaluation metrics, demonstrating the model’s potential utility in clinical decision-making. The web-based application 
makes this model readily accessible to clinicians, potentially helping optimize antibiotic dosing decisions and reduce 
both inadequate treatment and overexposure. While promising, future studies with larger datasets and prospective 
validation are needed to further improve the model’s performance and validate its clinical utility. This work represents 
a step forward in using machine learning to support antimicrobial stewardship and personalized antibiotic therapy.
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For instance, based on clinical data, an antibiotic com-
bination recommendation model was constructed to 
predict antibiotic combination recommendations by 
Qin et al. [23]. Kim et al. developed prediction models 
to estimate the likelihood of antibiotics being ineffective 
against urinary tract infections suspected to be hospital-
acquired [24]. Wang et al. built ML models to provide an 
automated identification for patients at risk of chronic 
obstructive pulmonary disease [25]. However, within the 
field of anti-infectives, the researches mainly focus on 
predicting antibiotic resistance, discovering new drugs, 
and drug design [26–28]. There is still a lack of relevant 
research on the development of ML algorithms spe-
cifically for predicting the effectiveness of antimicrobial 
drugs based on the clinical characteristics of patients 
with bacterial LRTIs, especially for TZP that are widely 
used in clinical practice.

In this study, a web-based ensemble learning (EL) 
model, integrating Logistic Regression (LR), Support 
Vector Machine (SVM), and Random Forest (RF), was 
developed to predict the clinical effectiveness of TZP 
(4:1) as the primary therapeutic strategy for treating 
bacterial LRTIs using patient clinical data. The model 
demonstrated balanced performance across key evalua-
tion metrics. This tool has the potential to aid clinicians 

in optimizing antibiotic prescribing and mitigating the 
development of antibiotic resistance.

Methods
Study design and setting
The entire experimental procedure is shown in Fig. 1. Our 
prediction framework was based on four common ML 
models: LR, RF, SVM, and Gaussian Naive Bayes (GNB). 
To investigate the feature importance, we employed the 
SHapley Additive exPlanations (SHAP) algorithm to 
conduct a global analysis after data imputation and pre-
processing [29, 30]. SelectKBest and RFE were utilized 
to assess the sensitivity of different models to varying 
feature numbers. Subsequently, a comprehensive evalu-
ation was conducted using grid search, cross-validation, 
and an independent test set, with performance metrics 
including Receiver Operating Characteristic (ROC)-
Area Under the Curve (AUC), recall, precision, accuracy, 
F1-score, and log loss. The final model’s input features 
and hyperparameters were determined through iterative 
optimization.

Study participants
The inclusion criteria for the study were as follows: 
patients were admitted to the Department of Pulmonary 
and Critical Care Medicine at Shanghai Pudong Hospital, 

Fig. 1  Workflow of the research. IC, inclusion criteria; EC, exclusion criteria; RUS, the Random Under-Sampling; RFE, Recursive Feature Elimination; LR, 
logistic regression; RF, random forest; SVM, Support Vector Machine; GNB, Gaussian Naive Bayes; FN, false negative; TN, true negative; TP, true positive; FP, 
false positive
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Shanghai, China, between January 1, 2021, and July 31, 
2023; there were no gender restrictions; at least one clini-
cal symptom or laboratory finding was associated with 
bacterial pneumonia; computed tomography (CT) con-
firmed bacterial pneumonia; patients were diagnosed 
with bacterial LRTIs; TZP (4:1 ratio) (it will be abbrevi-
ated as ‘TZP’ unless otherwise specified) was used as 
the main first-line treatment regimen after admission; 
patients were aged 18 years or older;

The exclusion criteria for the study were as follows: 
incomplete clinical data; concurrent infection at other 
sites; TZP treatment for less than 3 days; those with 
severe hepatic or renal dysfunction (Child-Pugh class B 
or higher; estimated glomerular filtration rate (EGFR) 
below 20 ml/min) were excluded as well.

Endpoints and assessments
Based on the comprehensive assessment of patient symp-
toms and signs (such as temperature, lung auscultation, 
mental status, etc.), laboratory indicators, and lung imag-
ing, clinicians determine whether piperacillin is effective 
or treatment has failed.

Criteria for clinical ineffectiveness: after 3 days or more 
for treatment, if none of the three indicators mentioned 
above show significant improvement, clinicians escalate 

the antibiotic or consider transferring the patient. Cri-
teria for clinical effectiveness: after 3 days or more for 
treatment, if the overall assessment of the mentioned 
criteria shows improvement, clinicians discontinue or 
reduce the use of the antibiotic.

Definition of features
In this study, we initially selected 26 factors as features 
for predicting TZP treatment of LRTIs. These features 
include aspects of patient demographics (such as gen-
der, age, and weight), infection-related factors (such 
as temperature, white blood cell count, and neutrophil 
ratio), coexisting conditions (such as diabetes, chronic 
obstructive pulmonary disease, and bronchiectasis), and 
antimicrobial therapy details (such as TZP dosage and 
concurrent antimicrobial usage). Some features, initially 
continuous variables, were converted into binary vari-
ables, with reference cutoffs primarily based on relevant 
guidelines and indicators modified by our hospital’s labo-
ratory according to the guidelines. Specific details can be 
referred to Table 1.

Data preprocessing
The dataset was initially randomly split into training and 
test sets using a 7:3 ratio. For the training set, missing 

Table 1  Variables and their assignments
Factors Abbreviations Assignments/units
Age Age(X1) continuous variable, year
Weight Weight(X2) continuous variable, Kg
Estimated glomerular filtration rate EGFR(X3) continuous variable, ml/min
Blood urea nitrogen BUN(X4) continuous variable, mmol/L
Serum Albumin ALB(X5) continuous variable, g/L
White Blood Cell Count WBC(X6) continuous variable,×109/L
D-dimer DD(X7) continuous variable, mg/L
C-Reactive Protein CRP(X8) continuous variable, mg/L
Procalcitonin PCT(X9) continuous variable, ng/ml
Neutrophil-to-Lymphocyte Ratio NLR(X10) continuous variable, dimensionless
Lymphocyte count LYM(X11) continuous variable, ×109/L
Body Temperature Temp(X12) >=37.3 °C = 1; <37.3 °C = 0
Sex Sex(X13) Female = 0; Male = 1
Respiratory Failure RF(X14) YES = 1; NO = 0
Recent hospitalization history(in 1 month) RH(X15) YES = 1; NO = 0
Diabetes Mellitus DM(X16) YES = 1; NO = 0
Active tumor CA(X17) YES = 1; NO = 0
Chronic Obstructive Pulmonary Disease COPD(X18) YES = 1; NO = 1
Bronchiectasis BE(X19) YES = 1; NO = 0
Interstitial lung disease ILD(X20) YES = 1; NO = 0
Cerebrovascular disease CVD(X21) YES = 1; NO = 0
Heart Failure HF(X22) YES = 1; NO = 0
Outpatient treatment history before admission OPTH (X23) YES = 1; NO = 0
Dosage of Piperacillin/Tazobactam TZPD(X24) 2.5 g, Q8H = 1; 3.125 g, Q8H = 0
Combining erythromycin Ery(X25) YES = 1; NO = 0
Combining Nemonoxacin NXC(X26) YES = 1; NO = 0
Clinical outcomes (Result) Failure = 1; Success = 0
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values in continuous variables were imputed using the 
K-Nearest Neighbors (KNN) method, while categorical 
binary variables were imputed using mode imputation 
(SimpleImputer). Subsequently, continuous variables 
were standardized (StandardScaler) after imputation. 
The imputers and standardizers derived from the training 
set were then applied to process the test set data. Prior 
to model fitting, the processed training data underwent 
random under-sampling to ensure balanced classes in 
the outcome variable [31, 32]. This process was executed 
using the “imblearn” package in Python.

Feature selection
To ensure model robustness, we employed a two-
pronged approach to feature selection. Initially, Recursive 
Feature Elimination (RFE) was used to identify a subset 
of potentially relevant features [33]. Subsequently, SHAP 
were used to assess the importance of these features and 
provide further insights into their impact on model pre-
dictions. The final feature set was then determined by 
evaluating the performance of models trained with dif-
ferent combinations of these features on both the test set 
and using cross-validation.

Hyperparameter optimization
After the feature selection process, we proceeded with 
hyperparameter optimization for the selected ML mod-
els. We GridSearch to maximize the AUC, a crucial met-
ric for evaluating model performance.

Evaluation parameters
Considering the imbalanced classes within the data-
set, we utilized several metrics, including AUC, Recall, 
Accuracy, Precision, and F1 Score, to evaluate the mod-
els. These metrics were computed using the following 
formulas.

	
Recall = TP

TP + FN
� (1)

	
Accuracy = TP + TN

TP + FP + TN + FN
� (2)

	
Precision = TP

TP + FP
� (3)

	
F1 Score = 2 × Precision × Recall

Precision + Recall
� (4)

	

Log loss =

− 1
N

∑N

i=1
[yi ∗ log (pi) + (1 − yi) ∗ log(1 − pi)]

� (5)

True positive (TP) refers to the number of cases accu-
rately predicted by the model as treatment failures, which 
were indeed treatment failures in reality. False positive 
(FP) represents the number of cases erroneously clas-
sified by the model as treatment failures, whereas they 
were actually successful treatments in reality. True nega-
tive (TN) signifies the number of cases accurately classi-
fied by the model as treatment successes, which indeed 
were successful treatments in reality. False negative (FN) 
indicates the number of cases incorrectly identified by 
the model as treatment successes, whereas they were 
actually treatment failures in reality. N: The number of 
samples. yi: the true label for the i-th sample (either 0 or 
1 in binary classification). pi: the predicted probability 
of the positive class for the i-th sample. log: The natural 
logarithm.

Model ensembling and interpretability
An EL model was constructed utilizing a VotingClas-
sifier with a soft voting strategy and equal weighting of 
the constituent base learners. The performance of the 
EL model was rigorously evaluated via a 1000-iteration 
bootstrap resampling methodology applied to the train-
ing dataset. Subsequent performance assessment was 
conducted using an independent test dataset.

The relative importance of input features for the final 
predictive model was characterized using both SHAP 
and Boruta algorithms. SHAP force plot analysis was 
further conducted to elucidate the complex interplay of 
individual features in influencing clinical outcomes.

Online deployment of the model
For online deployment, the developed EL model was inte-
grated into a web application hosted on a low-resource 
server platform running Windows Server 2012 R2. Flask 
(v2.2) was used to implement the web application’s front-
end interface.

Results
Baseline characteristics
A total of 1,314 patients primarily treated with TZP 
as initial empiric antibiotic therapy were included in 
the analysis, with 995 (75.7%) in the success group and 
319 (24.3%) in the failure group. The median age of all 
patients was 74.00 years (IQR: 66.00–82.00). The data 
were divided into training and test sets using stratified 
random sampling in a 7:3 ratio. As shown in the table, the 
distributions of most baseline characteristics, including 
Age, EGFR, Weight, and so on, were similar between the 
training and test sets (all p > 0.05). This suggests that the 
test set is representative of the training set and the overall 
population. The outcome variable, ‘Result’, also showed 
comparable distributions between the training and test 
sets (p = 0.227), indicating no significant bias in outcome 
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distribution across the datasets. Specific details can be 
referred to Table 2.

Feature selection
Based on the combined results of Recursive Feature Elim-
ination (RFE) (Fig.  2a), SHapley Additive exPlanations 
(SHAP) analysis (Fig.  2b), and an assessment of model 
performance across various feature combinations (Fig. 3), 
we identified 13 key features (ALB, CRP, DD, LYM, NLR, 
EGFR, PCT, CA, HF, BUN, RH, RF, and CVD) as the 
common input features for all subsequent base models.

Model training
Feature selection was performed iteratively using RFE or 
SelectKBest methods, complemented by SHAP analy-
sis on the training dataset. The predictive performance 
of the four base models was subsequently evaluated on 
the independent test set, with their respective ROC-AUC 
curves shown in Fig. 3.

Table  3 presents the AUC, recall, accuracy, precision, 
F1 score, and log loss obtained through independent test 
set of the four models. The results presented in Table 3 
indicate that Logistic LR, RF, and SVM exhibited the 
highest overall performance among the models assessed. 

These models achieved ROC-AUC values of 0.68, 0.69, 
and 0.68, respectively, and were therefore chosen as the 
base models for the subsequent ensemble modeling.

Model ensembling
To further enhance predictive performance, an EL model 
was developed using a VotingClassifier (voting=’soft’, 
weights= [1]), with the RF, LR, and SVM models as base 
learners. The EL model’s performance was rigorously 
evaluated using 1000-iteration bootstrap cross-validation 
on the training set and subsequently assessed on an inde-
pendent test set. This evaluation yielded a cross-validated 
ROC-AUC of 0.71 (Fig. 4a) and a test set ROC-AUC of 
0.69 (Fig. 4b). On the independent test set, the EL model 
achieved a recall of 0.69 (Fig.  4c-d), accuracy of 0.64, 
precision of 0.40, F1-score of 0.50, and log loss of 0.66 
(Fig. 4d).

Model interpretability
To enhance model interpretability, we employed both 
SHAP and Boruta algorithms to analyze feature impor-
tance in the ensemble model. The SHAP analysis revealed 
that ALB, CRP, and NLR were the most influential fea-
tures in model predictions (Fig.  5a). This finding was 

Table 2  Comparison of baseline characteristics between train set and test set*
Variable Overall (n = 1314) Train set (n = 919) Test set(n = 395) P value
Age 74.00 (66.00–82.00) 74.00 (66.00–81.00) 75.00 (65.00–82.00) 0.600
EGFR 87.83 (72.15–97.14) 87.82 (71.23–97.12) 87.90 (72.80-97.21) 0.914
Weight 60.00 (53.00–70.00) 60.00 (52.75-70.00) 60.00 (53.30–70.00) 0.851
BUN 6.10 (4.80–7.90) 6.00 (4.80–7.80) 6.30 (4.90–8.20) 0.129
ALB 38.00 (35.30–40.60) 37.90 (35.15–40.65) 38.20 (35.50–40.60) 0.307
LYM 1.15 (0.74–1.61) 1.14 (0.73–1.62) 1.17 (0.76–1.58) 0.734
PCT 0.10 (0.07–0.19) 0.10 (0.07–0.19) 0.10 (0.08–0.19) 0.506
WBC 7.51 (5.75–10.20) 7.59 (5.87–10.38) 7.39 (5.60–9.99) 0.126
CRP 10.27 (1.03–51.67) 10.36 (0.91–51.27) 10.19 (1.45–52.16) 0.457
DD 0.60 (0.32–1.23) 0.61 (0.32–1.25) 0.58 (0.32–1.21) 0.650
NLR 0.75 (0.66–0.83) 0.76 (0.66–0.83) 0.74 (0.65–0.83) 0.348
Sex 863 (65.7%) 603 (65.6%) 260 (65.8%) 0.992
Temp 302 (23.0%) 211 (23.0%) 91 (23.0%) 1.000
RF 286 (21.8%) 208 (22.6%) 78 (19.7%) 0.276
RH 215 (16.4%) 147 (16.0%) 68 (17.2%) 0.641
DM 226 (17.2%) 164 (17.8%) 62 (15.7%) 0.386
CA 213 (16.2%) 156 (17.0%) 57 (14.4%) 0.286
COPD 735 (55.9%) 515 (56.0%) 220 (55.7%) 0.957
BE 242 (18.4%) 170 (18.5%) 72 (18.2%) 0.969
ILD 104 (7.9%) 74 (8.1%) 30 (7.6%) 0.865
CVD 508 (38.7%) 367 (39.9%) 141 (35.7%) 0.166
HF 576 (43.8%) 403 (43.9%) 173 (43.8%) 1.000
OPTH 961 (73.1%) 663 (72.1%) 298 (75.4%) 0.242
PIPD 974 (74.1%) 690 (75.1%) 284 (71.9%) 0.255
Ery 351 (26.7%) 246 (26.8%) 105 (26.6%) 0.999
NXC 192 (14.6%) 142 (15.5%) 50 (12.7%) 0.219
Result 319(24.3%) 214 (23.3%) 105 (26.6%) 0.227
*See Table 1 for full feature names
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further supported by the Boruta algorithm, which iden-
tified ALB, CRP, and NLR as the top-ranked important 
features (Fig.  5b). To demonstrate the model’s decision-
making process, we presented two representative cases 
using SHAP force plots. In a correctly predicted treat-
ment failure case (Fig. 5c), elevated NLR (0.93) and DD 
(1.72) values strongly contributed to the prediction of 
treatment failure, while lower PCT (0.1) had an opposing 
effect. Conversely, in a successfully predicted treatment 
success case (Fig. 5d), normal ALB (42.9) and LYM (1.2) 
values were key factors driving the prediction toward 
treatment success, while elevated BUN (9.2) suggested 
potential treatment failure.

Web-based model deployment
To facilitate clinical application, we developed a web-
based prediction system using the Flask framework 
(Fig. 6). This system implements our EL to predict TZP 
treatment outcomes in LRTIs patients. The interface 
allows clinicians to input 13 key clinical parameters 
identified through our feature importance analysis. The 
system provides real-time predictions categorized as 
either “Success” (Fig.  6a)or “Failure” (Fig.  6b), accom-
panied by corresponding treatment recommenda-
tions. The web application is freely accessible at 
http://106.12.146.54:1020/.

Discussion
Antibiotic resistance is a growing global threat, result-
ing in an estimated 1.3  million deaths in 2022. If left 
unchecked, this issue could lead to a staggering 10 million 

deaths annually by 2050 due to infections caused by anti-
biotic-resistant bacteria [34]. One contributing factor 
is the common issue of inadequate antibiotic dosage in 
clinical practice [35–37]. This can happen because of a 
phenomenon called the mutation selection window [38]. 
When the dosage is too low, drug concentrations in the 
blood may fall within this window, allowing the growth of 
resistant bacteria and ultimately treatment failure.

Although the use of TZP (4:1) can reduce the intensity 
of antibiotic use to meet the requirements of hospital 
management to some extent, the dosage of piperacillin 
in TZP (4:1) is obviously insufficient for many patients, 
due to the extreme limitation of tazobactam [39]. In the 
absence of therapeutic drug monitoring (TDM), mak-
ing preliminary predictions about the clinical efficacy of 
TZP (4:1) for patients based on their clinical information 
may hold positive significance in enhancing its clinical 
effectiveness and decreasing the emergence of resistant 
bacteria. This approach could contribute to a beneficial 
balance between the intensity of antimicrobial drug use 
and their therapeutic effectiveness.

In ML model evaluation metrics, accuracy and recall 
are two conflicting indicators [40]. Which side to lean 
towards often depends on the nature of the research 
question. In this research, we place a higher emphasis on 
the model’s recall. This is because we prefer to identify 
as many cases as possible that may not respond well to 
treatment, allowing for the early consideration of alterna-
tive medications such as TZP (8:1), cefoperazone-sulbac-
tam, and others. Additionally, if the model predicts cases 
that could potentially fail the treatment as cases likely 

Fig. 2  Feature selection curves for each model. (a) Cross-validated AUC scores versus the number of selected features for different models. The optimal 
number of features and corresponding AUC scores are annotated for each model. (b) SHAP values showing the impact of each feature on model predic-
tions. Features are ranked by their absolute SHAP values, with blue indicating lower values and red indicating higher values. ALB and CRP showed the 
strongest impact on model predictions
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to succeed, it does not seem to be a significant issue in 
clinical practice. In such situations, the success rate of 
alternative antimicrobial treatments chosen by clinicians 
may be higher. In summary, a model with higher recall 
can filter out more cases where TZP (4:1) treatment is 
unsuccessful, and a slightly lower precision does not have 
a substantial impact on clinical practice.

In this study, we also found many factors that con-
tribute to the failure of TZP (4:1) anti-infection, such as 

hypoproteinemia, higher estimated glomerular filtration 
rate (EGFR) (high EGFR levels/activity may contribute 
to reduced drug concentrations), increased neutrophil 
ratio (NLR), increased C-reactive protein (CRP), and 
decreased serum albumin (ALB), and active tumors (CA) 
(Fig.  4). Individually, these features have limited impact 
on the outcome of infection, but when combined, they 
exhibit a strong predictive effect [41, 42]. Additionally, 
these features hold relevance for future related research.

Table 3  Performance metrics of the models based on independent test set
Model Accuracy Precision Recall F1 score AUC Log loss
LR 0.63 0.38 0.63 0.47 0.68 0.68
RF 0.64 0.40 0.68 0.50 0.69 0.65
SVM 0.61 0.37 0.68 0.48 0.68 0.66
GNB 0.52 0.32 0.71 0.44 0.65 1.17

Fig. 3  ROC curves of four machine learning models on the independent test set. (a) Receiver Operating Characteristic (ROC) curves for RF (AUC = 0.69), (b) 
LR (AUC = 0.68), (c) SVM (AUC = 0.68), and (d) GNB (AUC = 0.65) models, respectively. The dashed diagonal line represents random prediction (AUC = 0.5). 
The x-axis shows the False Positive Rate, and the y-axis shows the True Positive Rate
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Additionally, there is a tendency towards overuse or 
misuse of antibiotics, including combinations like PIPT 
with other agents such as fluoroquinolones or macro-
lides. It is well-recognized that antibiotic misuse and 
overuse are primary drivers of antimicrobial resistance 
(AMR) [43], which has led to a significant increase in 
bacterial resistance rates in recent years. Initially, we 
included concomitant erythromycin or nemonoxacin 
administration as baseline characteristics in the TZP 
analysis. However, feature importance ranking in both 
initial and final iterations consistently placed these fac-
tors low among all features. This suggests that combined 
antibiotic therapy may not be a primary determinant of 
anti-infective treatment success, and other factors such 

as inflammatory markers, nutritional status, and comor-
bidities should be considered.

The AUC value reflects the model’s robust classification 
capability, furnishing dependable predictions in discern-
ing between patients who have undergone successful and 
failed treatments [44, 45]. Although the AUC value on the 
test set in the present study did not exceed 0.7 (Fig.  4), 
lower AUC values seem to be a common problem for 
models that use clinical information as features [25, 46]. 
This seems to be related to the complexity of clinical data 
and the imbalance of data. In some cases, the situation 
may indeed exceed the prediction ability of the model, 
such as when the bacteria infecting the patient exceed the 
antibacterial spectrum of TZP [12]. This problem may 

Fig. 4  Performance of the EL model. (a) Mean ROC curve (with standard deviation shown as shaded area) derived from 1000 bootstrap iterations on the 
training set (AUC = 0.71 ± 0.01). (b) ROC curve on the independent test set (AUC = 0.69). (c) Confusion matrix on the test set. (d) Performance metrics on 
the test set: log loss = 0.66, recall = 0.69, accuracy = 0.64, precision = 0.40, F1-score = 0.50, ROC-AUC = 0.69
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be improved in the future by increasing the amount of 
research data and using more advanced models.

The feature importance analysis provided valuable 
insights into the model’s decision-making process. Both 
SHAP and Boruta algorithms consistently identified key 
clinical parameters that significantly influenced treat-
ment outcomes. Laboratory indicators such as ALB, CRP, 
and NLR demonstrated substantial impact on model pre-
dictions, which aligns with their established clinical rel-
evance in infection and inflammation. The SHAP force 

plots further validated our feature selection by illustrat-
ing how these parameters interact to predict treatment 
outcomes. For instance, in treatment failure cases, ele-
vated inflammatory markers (NLR, DD) strongly contrib-
uted to the prediction, while in successful cases, normal 
albumin levels and lymphocyte counts were key positive 
predictors. This interpretability not only validates our 
model’s clinical reliability but also reflects established 
pathophysiological mechanisms of respiratory infections. 
The consistency between our model’s feature importance 

Fig. 5  Feature importance analysis and interpretation of the ensemble model predictions. (a) SHAP summary plot showing the impact and distribution 
of each feature on model output. Red indicates higher feature values, while blue represents lower values. The x-axis represents the SHAP value impact on 
model predictions. (b) Boruta feature importance rankings displaying the relative importance of selected features in the final model. (c) SHAP force plot 
demonstrating the prediction process for a correctly identified treatment failure case. Features in red pushed the prediction toward treatment failure, 
while blue features opposed this prediction. (d) SHAP force plot illustrating the prediction process for a correctly predicted treatment success case. Fea-
tures in red suggested treatment failure, while blue features supported treatment success
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rankings and clinical knowledge enhances its credibility 
as a decision support tool. Moreover, the selected fea-
tures are readily available in routine clinical practice, 
making our model both interpretable and practical for 
real-world applications.

This study has several limitations that should be 
addressed to validate the proposed model’s effectiveness 
further. First, while we carefully selected 26 clinical fea-
tures for inclusion, expanding the initial feature set might 
uncover additional variables that significantly impact 
treatment outcomes. This expansion could enhance the 
model’s predictive capability. Second, the sample size, 
though sufficient for this analysis, remains limited in 
scope, particularly in representing the diverse patient 
populations and pathogen profiles observed in broader 
clinical settings. Increasing the dataset size and diver-
sity would likely improve the model’s generalizability 
and robustness. Third, the complex and multifactorial 
etiology of LRTIs, including infections caused by patho-
gens outside the antibacterial spectrum of TZP or influ-
enced by factors unmeasured in this study, may challenge 
the model’s predictive accuracy. Addressing this would 
require incorporating data on potential microbial resis-
tance profiles and using advanced modeling approaches 
capable of capturing such complexities. Despite these 
limitations, the study provides a robust foundation for 
applying ML in antimicrobial decision-making, support-
ing future research to refine and validate the model’s clin-
ical utility.

Conclusions
In this study, we successfully developed and validated an 
ensemble machine learning model that effectively pre-
dicts the clinical effectiveness of TZP (4:1) in treating 

LRTIs. The model achieved robust performance met-
rics including an AUC of 0.69 and a recall of 0.69 on the 
independent test set. Through feature importance analy-
sis using both SHAP and Boruta algorithms, we identi-
fied key clinical parameters that significantly influence 
treatment outcomes, with laboratory indicators such as 
ALB, CRP, and NLR demonstrating substantial predictive 
value. The model’s interpretability was enhanced through 
SHAP force plots, which revealed how different clinical 
parameters interact to influence predictions. To facilitate 
clinical application, we deployed the model as a web-
based tool that provides real-time predictions and treat-
ment recommendations (http://106.12.146.54:1020/). 
This work represents a significant step forward in apply-
ing machine learning to support clinical decision-making 
in antibiotic therapy, potentially helping optimize treat-
ment selection and reduce both inadequate treatment 
and antibiotic overexposure. While the current model 
shows promise, future studies with larger datasets and 
prospective validation are needed to further enhance its 
clinical utility and reliability.
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