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Abstract
Background Postoperative pulmonary infection (POI) is strongly associated with a poor prognosis and has a high 
incidence in elderly patients undergoing major surgery. Machine learning (ML) algorithms are increasingly being 
used in medicine, but the predictive role of logistic regression (LR) and ML algorithms for POI in high-risk populations 
remains unclear.

Methods We conducted a retrospective cohort study of older adults undergoing major surgery over a period of 
six years. The included patients were randomly divided into training and validation sets at a ratio of 7:3. The features 
selected by the least absolute shrinkage and selection operator regression algorithm were used as the input variables 
of the ML and LR models. The random forest of multiple interpretable methods was used to interpret the ML models.

Results Of the 9481 older adults in our study, 951 developed POI. Among the different algorithms, LR performed 
the best with an AUC of 0.80, whereas the decision tree performed the worst with an AUC of 0.75. Furthermore, the 
LR model outperformed the other ML models in terms of accuracy (88.22%), specificity (90.29%), precision (44.42%), 
and F1 score (54.25%). Despite employing four interpretable methods for RF analysis, there existed a certain degree 
of inconsistency in the results. Finally, to facilitate clinical application, we established a web-friendly version of the 
nomogram based on the LR algorithm; In addition, patients were divided into three significantly distinct risk intervals 
in predicting POI.

Conclusions Compared with popular ML algorithms, LR was more effective at predicting POI in older patients 
undergoing major surgery. The constructed nomogram could identify high-risk elderly patients and facilitate 
perioperative management planning.

Trial registration The study was retrospectively registered (NCT06491459).
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Introduction
Postoperative pulmonary infection (POI) is frequently 
linked to poor prognoses, prolonged hospital stays, 
and increased healthcare costs [1–3]. The incidence is 
between 0.9% and 39%, depending on the population and 
definition of the study [4, 5]. Due to the loss of physi-
ological organ reserves and the increased colonization 
of gram-negative bacteria in the upper respiratory tract, 
older people are more likely to develop POI [6]. In a 
study of cancer surgery, the hazard ratio for the one-year 
cumulative prevalence of POI in patients over 65 years of 
age was as high as 3.7-fold [7]. Owing to the character-
istics of major surgery, such as long operation time and 
repeated ischemia and reperfusion, it is easy to cause 
changes in the immune cells of the body and produce sys-
temic inflammatory reactions, resulting in lung function 
damage [3, 8]. Major surgery is associated with poor out-
comes, and with the aging of the population, the propor-
tion of elderly patients is gradually growing [9–11].

Furthermore, previous studies have shown that changes 
in circulating inflammatory cells (such as lymphocyte, 
neutrophil, and monocyte counts) are associated with 
postoperative complications [12–14]. Circulating inflam-
matory cell counts are readily available markers that may 
provide valuable information for predicting the risk of 
postoperative complications in elderly patients. Although 
some studies have explored the risk factors for POI [15–
17], few studies with large samples focused on POI after 
major surgery in older adults.

Machine learning (ML) is becoming increasingly prev-
alent in the medical field, especially for predicting com-
plications [18]. ML is a branch of artificial intelligence 
that builds models using vast amounts of medical data, 
leveraging algorithms that do not assume linearity in the 
relationships between variables. ML has the advantage 
of revealing deeper correlations in data and is robust to 
noisy information [19]. ML parses medical information 
and can be used to build disease occurrence, diagnosis, 
and prognosis assessment models to aid clinical decision-
making [20, 21]. Leading ML algorithms, such as decision 

tree (DT), random forest (RF), support vector machine 
(SVM), gradient boosting decision tree (GBDT), extreme 
gradient boosting (XGBoost), and multilayer perceptron 
(MLP), represent some of the most widely used models 
in the field [22]. However, some studies have shown that 
logistic regression (LR) models do not perform worse 
than ML models and even outperform ML in predicting 
complications [23–25]. ML faces limitations, including 
the need for large training datasets and poor interpret-
ability, as the influence of individual variables on model 
outcomes is often unclear [26]. To our knowledge, 
although there are studies involving different algorithms, 
few have investigated the performance of different algo-
rithms in predicting POI in older adults undergoing 
major surgery.

This study aimed to identify the predictors of POI for 
perioperative management and to compare the predic-
tive performance of the ML and LR models for POI after 
major surgery in elderly patients. Furthermore, various 
interpretable methods were employed to explore the 
variable importance of ML models.

Materials and methods
We obtained all data from the electronic database system 
for elderly patients who underwent surgery at the Wuhan 
Union Hospital from January 2014 to December 2019. 
In retrospective enrollment, the inclusion criteria were 
(1) age ≥ 65 years and (2) mechanical ventilation during 
major surgery. The exclusion criteria were: (1) preopera-
tive tracheal intubation, (2) preoperative pneumonia, (3) 
organ transplantation, and (4) missing data. According 
to the literature [27, 28], major surgery is any procedure 
involving general anesthesia for non-percutaneous, non-
endoscopic, and invasive surgery. This study adhered to 
the principles outlined in the Declaration of Helsinki and 
was approved by the Ethics Committee of our institution 
(Ethics Number: 2021 − 0986).

Keywords Elderly, Postoperative pulmonary infection, Logistic regression, Machine learning, Prediction model

Key Summary Point
• Postoperative pulmonary infection (POI) significantly impacts the prognosis of elderly patients undergoing major 
surgery, and identifying its risk factors can enhance treatment options.
• This study developed a POI prediction model using logistic regression (LR) and machine learning (ML) algorithms, 
with LR demonstrating the best performance (AUC of 0.80). Additionally, four methods were employed to explain 
the feature importance in the ML models.
• The nomogram generated from the LR model offers clinicians a practical tool for identifying high-risk elderly 
patients and optimizing perioperative management strategies.
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Data collection
We collected appropriate clinical variables based on the 
literature and clinical experience. Demographic data 
included age, male sex, body mass index (BMI), history 
of smoking and alcohol consumption, cancer, chronic 
obstructive pulmonary disease (COPD), hypertension, 
coronary artery disease, and diabetes, and laboratory 
test data included hemoglobin, platelet count, albumin, 
leukocyte count, lymphocyte count, neutrophil count, 
monocyte count, blood urea nitrogen (BUN), creati-
nine, total bilirubin (TBIL), alanine aminotransferase 
(ALT), and aspartate aminotransferase (AST). Surgery-
related factors included type of surgery, emergency sur-
gery, surgical incision, operation time, red blood cell 
transfusion (RBC transfusion), and colloidal infusion. To 
ensure the reliability of the data, they were reviewed and 

reconfirmed by two researchers, and contradictory data 
were resolved by the research team after discussion.

Primary outcome
The primary outcome was POI incidence during hospi-
talization. It is defined as new or progressive radiologi-
cal infiltration accompanied by at least two symptoms: 
antibiotic treatment, body temperature above 38  °C, 
increased or decreased white blood cell count, and/or 
purulent airway secretions [29, 30].

Data preprocessing
Figure  1 shows the detailed process of the data prepro-
cessing. We randomly divided the patients into training 
and validation sets in a ratio of 7:3. To reduce feature 
dimensionality and mitigate overfitting, we employed the 
least absolute shrinkage and selection operator (LASSO) 

Fig. 1 The general workflow of this study
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regression algorithm to identify relevant risk factors. 
In the LASSO regression analysis, selected variables 
were incorporated into the model, and the regulariza-
tion parameter λ was determined using the minimum 
standard error method (1-SE rule) through 10-fold 
cross-validation. A correlation heat map and variance 
inflation factor (VIF) were used to access multicollinear-
ity between variables.

Due to the imbalanced distribution of POI in the data-
set, random undersampling (RUS) was applied to bal-
ance the samples. To prevent data leakage, RUS was 
performed only on the training set. Dummy coding was 
applied for unordered multi-categorical variables. For 
continuous data, we applied standardization to produce 
data with a mean of 0 and a standard deviation of 1.

Data modeling
The data modelling process is illustrated in Fig.  1. Two 
distinct classes of modeling algorithms were considered 
for the building: the traditional LR and ML algorithms. 
To obtain more convincing results, we selected the fol-
lowing six popular ML algorithms: DT, RF, SVM, GBDT, 
XGBoost, and MLP.

To optimize model performance, we tuned hyperpa-
rameters using grid search with five-fold cross-validation 
(GridSearchCV). GridSearchCV evaluates all possible 
parameter combinations through cross-validation and 
selects the best set based on performance scores. For 
cross-validation, the training set was split into five equal 
parts. In each iteration, one part served as the valida-
tion set, while the other four were used for training. This 
process was repeated five times, and the model’s per-
formance was optimized based on the area under the 
receiver operating characteristic curve (AUC).

The best parameters were applied to the validation 
set. Model performance was evaluated using AUC and 
the Brier score, where the Brier score ranges from 0 to 1 
(lower values indicate better calibration). Additional met-
rics, including accuracy, sensitivity, specificity, precision 
and F1 score were used to compare model performance. 
The cut-off threshold was determined using clinical expe-
rience or the Youden index.

The feature importance attribute with the model, local 
interpretable model-agnostic explanations (LIME), per-
mutation feature importance, and the Shapley additive 
explanation (SHAP) method were selected for feature 
importance analysis. A nomogram was constructed using 
the LR algorithm. The study population was divided into 
three groups based on the nomogram and clinical prac-
tice. The three groups differed significantly in the pre-
dicted risk of POI: low-risk (< 10%), intermediate-risk 
(10-30%), and high-risk (> 30%).

Data-analysis
Continuous variables are presented as means ± standard 
deviations or medians (interquartile ranges, IQR), using 
independent samples t-tests and non-parametric tests, 
respectively. Categorical variables were expressed as fre-
quencies and percentages and compared using the chi-
squared test or Fisher’s exact test.

A P-value < 0.05 (two-sided) was considered statisti-
cally significant. The XGBoost algorithm is constructed 
using the XGBoost package. Other ML algorithms were 
built using the scikit-learn package. Construction of the 
ML models was completed using Python (version 3.8.8). 
The remaining data analyses were performed using R 
software (version 4.1.1).

Results
Baseline characteristics
This study assessed the eligibility of older adults under-
going major surgery at our hospital over a six-year 
period. Based on the inclusion and exclusion criteria, 
9481 patients were analyzed. The clinical characteristics 
of the patients are summarized in Table 1. A total of 951 
patients developed POI, accounting for 10.03% of the 
population, while 8530 did not. The median age of the 
patients with POI was 69 years, and 53.78% were male. 
Compared to non-POI patients, patients with POI were 
more male, had more comorbidities, lower hemoglobin 
and albumin levels, higher levels of inflammatory fac-
tors, and longer operation time. In addition, the length 
of postoperative hospital stay and total length of hospi-
talization were significantly higher in patients who devel-
oped POI (16 vs. 10, P < 0.001; 25 vs. 16, P < 0.001). There 
were no significant differences between the two cohorts 
(training and validation sets) for any of the features col-
lected, including the incidence of POI (10.03% vs. 10.02%, 
P = 1).

Feature selection
Based on the LASSO regression analysis of the train-
ing set, five variables were entered into the final model 
(Fig.  2). These five variables were COPD, neutrophil 
count, albumin level, surgical incision, and operation 
time, which were independently associated with POI 
(P < 0.05). To explore multicollinearity between the inde-
pendent variables, we calculated Spearman’s correlation 
coefficients and visualized them in a heatmap (Fig.  3). 
The heatmap shows low correlations between the vari-
ables. Furthermore, all variance inflation factor values 
were below 2, confirming minimal multicollinearity. The 
hyperparameters of the ML models are detailed in Table 
S1.
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Variables Total
(n = 9481)

Without POI
(n = 8530)

With POI
(n = 951)

P value Training set
(n = 6637)

Validation set
(n = 2844)

P 
value

Demographics
Age, years 69 (67, 73) 69 (67, 73) 69 (67, 74) 0.058 69 (67, 73) 69 (67, 73) 0.814
Male, % 5099 (53.78) 4499 (52.74) 600 (63.09) < 0.001 3586 (54) 1513 (53.2) 0.471
BMI, kg/m2 22.89 (20.81, 

25.21)
22.89 (20.81, 
25.25)

22.66 (20.76, 
24.80)

0.046 22.89 (20.83, 
25.26)

22.86 (20.76, 
25.05)

0.164

Smoking history, % 2224 (23.46) 1899 (22.26) 325 (34.17) < 0.001 1567 (23.61) 657 (23.1) 0.611
Drinking history, % 1699 (17.92) 1479 (17.34) 220 (23.13) < 0.001 1197 (18.04) 502 (17.65) 0.676
COPD, % 2220 (23.42) 1899 (22.26) 321 (33.75) < 0.001 1542 (23.23) 678 (23.84) 0.54
Cancer, % 1278 (13.48) 1092 (12.8) 186 (19.56) < 0.001 905 (13.64) 373 (13.12) 0.518
Hypertension, % 3559 (37.54) 3171 (37.17) 388 (40.80) 0.031 2510 (37.82) 1049 (36.88) 0.403
Coronary artery disease, % 1198 (12.64) 985 (11.55) 213 (22.4) < 0.001 841 (12.67) 357 (12.55) 0.9
Diabetes, % 1248 (13.16) 1101 (12.91) 147 (15.46) 0.031 896 (13.5) 352 (12.38) 0.147
Laboratory test
Hemoglobin count, g/L 125 (112, 135) 125 (113, 135) 122 (109, 134) < 0.001 125 (112, 135) 125 (113, 135) 0.843
Platelet count, *109/L 192 (153, 236) 193 (154, 237) 185 (143, 228) < 0.001 193 (154, 236) 192 (151, 236) 0.146
Albumin, g/L 39.5 (36.4, 42.6) 39.6 (36.6, 42.7) 38.4 (35.3, 41.3) < 0.001 39.5 (36.3, 42.6) 39.5 (36.5, 42.5) 0.87
Leukocyte count, *109/L 5.69 (4.68, 6.98) 5.66 (4.67, 6.93) 5.93 (4.85, 7.37) < 0.001 5.67 (4.67, 6.97) 5.72 (4.7, 7.01) 0.342
Neutrophil count, *109/L 3.45 (2.64, 4.57) 3.43 (2.62, 4.53) 3.69 (2.84, 4.98) < 0.001 3.45 (2.64, 4.55) 3.45 (2.65, 4.61) 0.573
Monocyte count, *109/L 0.41 (0.32, 0.53) 0.41 (0.32, 0.53) 0.45 (0.34, 0.57) < 0.001 0.41 (0.32, 0.53) 0.41 (0.31, 0.54) 0.798
Blood urea nitrogen, mmol/L 5.52 (4.42, 6.84) 5.5 (4.4, 6.79) 5.81 (4.63, 7.48) < 0.001 5.51 (4.43, 6.83) 5.53 (4.4, 6.87) 0.799
Creatinine, µmol/L 70.7 (59.9, 83.6) 70.4 (59.6, 83) 74.1 (63.55, 87.85) < 0.001 70.6 (60, 83.5) 71.1 (59.9, 83.8) 0.716
TBIL, µmol/L 12.1 (9.1, 16.1) 12.1 (9.1, 16.1) 11.6 (8.7, 16.3) 0.09 12 (9.1, 16) 12.1 (9.1, 16.3) 0.572
ALT, U/L 19 (13, 29) 19 (13, 29) 19 (13, 30) 0.827 19 (13, 29) 19 (13, 29) 0.464
AST, U/L 21 (17, 27) 21 (17, 27) 21 (16.5, 28) 0.35 21 (17, 27) 21 (17, 27) 0.403
Serum sodium (mmol/L) 141.5 (139.8, 

143.1)
141.6 (139.8, 
143.1)

141.2 (139.3, 143) 0.002 141.5 (139.7, 143) 141.6 (139.9, 
143.1)

0.313

Serum potassium (mmol/L) 4 (3.77, 4.26) 4 (3.77, 4.25) 4 (3.76, 4.3) 0.406 4 (3.77, 4.25) 4 (3.75, 4.26) 0.958
Serum calcium (mmol/L) 2.22 (2.13, 2.3) 2.22 (2.13, 2.3) 2.2 (2.12, 2.29) < 0.001 2.22 (2.13, 2.3) 2.22 (2.13, 2.3) 0.996
Intraoperative variables
Type of surgery < 0.001 0.718
Otolaryngology 200 (2.1) 196 (2.3) 4 (0.4) 200 (2.1) 143 (2.2)
Gynecology 304 (3.2) 299 (3.5) 5 (0.5) 304 (3.2) 216 (3.3)
Breast and thyroid 646 (6.8) 638 (7.5) 8 (0.8) 646 (6.8) 452 (6.8)
Neurosurgery 396 (4.2) 347 (4.1) 49 (5.2) 396 (4.2) 286 (4.3)
Digestive 3732 (39.4) 3367 (39.5) 365 (38.4) 3732 (39.4) 2591 (39)
Vascular 336 (3.5) 325 (3.8) 11 (1.2) 336 (3.5) 231 (3.5)
Urology 766 (8.1) 747 (8.8) 19 (2) 766 (8.1) 526 (7.9)
Cardiac 759 (8) 537 (6.3) 222 (23.3) 759 (8) 536 (8.1)
Thoracic 647 (6.8) 436 (5.1) 211 (22.2) 647 (6.8) 459 (6.9)
Others 420 (4.4) 414 (4.9) 6 (0.6) 420 (4.4) 312 (4.7)
Surgical incision, % < 0.001 0.137
Open thoracotomy 1112 (11.73) 733 (8.59) 379 (39.85) 784 (11.81) 328 (11.53)
Thoracoscopic 352 (3.71) 272 (3.19) 80 (8.41) 256 (3.86) 96 (3.38)
Open abdomen 2208 (23.29) 1976 (23.17) 232 (24.4) 1540 (23.2) 668 (23.49)
Laparoscopic 2036 (21.47) 1911 (22.4) 125 (13.14) 1383 (20.84) 653 (22.96)
Others 3773 (39.8) 3638 (42.65) 135 (14.2) 2674 (40.29) 1099 (38.64)
Emergency surgery, n (%) 275 (2.9) 236 (2.77) 39 (4.1) 0.026 203 (3.06) 72 (2.53) 0.182
Operation time, min 175 (113, 253) 167 (108, 240) 259 (187, 325) < 0.001 177 (113, 254) 174 (115, 250) 0.811
RBC transfusion, % 1753 (18.49) 1405 (16.47) 348 (36.59) < 0.001 1225 (18.46) 528 (18.57) 0.924
Colloid infusion < 0.001 0.349
None 2130 (22.47) 1986 (23.28) 144 (15.14) 1518 (22.87) 612 (21.52)
0-500 ml 3886 (40.99) 3544 (41.55) 342 (35.96) 2704 (40.74) 1182 (41.56)
> 500 ml 3465 (36.55) 3000 (35.17) 465 (48.9) 2415 (36.39) 1050 (36.92)

Table 1 Baseline characteristics of the cohort
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Algorithm performance
The LR model achieved the highest AUC of 0.80 on the 
validation set, while the DT model had the lowest AUC 
of 0.75 (Fig. 4A). Furthermore, the LR model’s AUC was 
0.81 (95% CI: 0.795–0.837) in the training set (Fig.  4B). 
The results showed that the AUC of LR significantly 
improved when compared to DT, RF, SVM, GBDT, and 
XGBoost (DT vs. LR: ∆AUC = -0.045, P < 0.001; RF vs. 
LR: ∆AUC = -0.014, P = 0.014; GBDT vs. LR: ∆AUC = 
-0.02, P = 0.005; XGBoost vs. LR: ∆AUC = 0.014, P = 0.032; 
SVM vs. LR: ∆AUC = 0.029, P = 0.001). Although there 
was a difference in AUC between LR and MLP, it did 
not reach statistical significance (MLP vs. LR: ∆AUC = 
-0.002, P = 0.56) (Table S2). The Brier scores of the seven 
algorithms ranged from 0.08 to 0.22, indicating good cali-
bration (LR: 0.081; DT: 0.197; RF: 0.187; XGBoost: 0.186; 
GBDT: 0.189; SVM: 0.219; MLP: 0.178) (Figure S1). The 
low Brier score of LR reflects its superior reliability in 
probability prediction. Calibration curve further con-
firmed that the LR model outperformed other algorithms 

in calibration (Figure S1). Additionally, the LR model 
outperformed the other ML models in terms of accuracy 
(88.22%), specificity (90.29%), precision (44.42%), and F1 
score (54.25%) (Table S2).

Algorithm interpretability and application
The four interpretable methods of the RF model showed 
that operation time, open thoracotomy, albumin level, 
and neutrophil count were important features (Fig.  5). 
The rankings of the top five variables in the feature 
importance and permutation importance methods were 
generally consistent. However, there were some differ-
ences in the rankings between the LIME importance and 
SHAP methods. Although the top three variables were 
generally related to surgery, there may be slight varia-
tions. In addition, the ranking of COPD fluctuated sig-
nificantly across various methods.

Based on AUC, specificity, accuracy, precision, F1 
score, Brier score, and calibration curve evaluation, we 
ultimately selected the LR model as the primary model 

Fig. 2 LASSO regression plot. (A) Plot of LASSO coefficient paths. (B) 10-fold cross-validation curve for the penalty term. LASSO, least absolute shrinkage 
and selection operator

 

Variables Total
(n = 9481)

Without POI
(n = 8530)

With POI
(n = 951)

P value Training set
(n = 6637)

Validation set
(n = 2844)

P 
value

Postoperative variables
Hospital length of stay, days 17 (12, 23) 16 (11, 22) 25 (18, 35) < 0.001 17 (11, 23) 17 (12, 23) 0.915
Postoperative hospital length of 
stay, days

10 (7, 14) 10 (7, 14) 16 (11.5, 23) < 0.001 10 (7, 14) 10 (7, 14) 0.834

POI 455 (5.09) - - - 666 (10.03) 285 (10.02) 1
Data are presented as median (interquartile range) or n (%) and compared using Mann-Whitney’s test, χ2 test, or Fisher’s exact test, respectively. BMI, body mass 
index; COPD, chronic obstructive pulmonary disease; TBIL, total bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; RBC, red blood cell; POI, 
postoperative pulmonary infection

Table 1 (continued) 
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and proceeded with its visualization. A web-based ver-
sion of the nomogram (Fig. 6) is available at  h t t p  s : /  / l i u  j i  e 1 
2  3 . s  h i n y  a p  p s . i o / d y n n o m a p p /. The proportion of patients 
stratified by the nomogram was similar in both cohorts, 
with 71.84%, 19.92%, and 8.24% of patients in the low-, 
medium-, and high-risk groups (development cohort) 
and 72.61%, 19.94%, and 7.45% (validation cohort), 
respectively (Fig. 7). Compared to the low-risk group, the 
incidence of POI was 4.62-fold and 12.98-fold higher in 
the medium-risk and high-risk groups of the develop-
ment cohort, respectively (Table 2).

Discussion
In this study on POI in older adults undergoing major 
surgery, we compared the predictive role of multiple 
models. The results showed that compared with the 
ML algorithms, the classical LR algorithm had a bet-
ter prediction effect on POI after major surgery in older 
patients. We also developed a visual nomogram and per-
formed risk stratification using the LR algorithm. Based 
on the preoperative and intraoperative variables, the 
model could help physicians assess the risk of POI ear-
lier and formulate relevant strategies. Our study included 

Fig. 3 The correlation heat map of variables in the final model

 

https://liujie123.shinyapps.io/dynnomapp/
https://liujie123.shinyapps.io/dynnomapp/
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a large sample size and identified simple predictors. The 
incidence of POI was 10.03%, consistent with previous 
literature [31, 32].

Consistent with previous studies, the MLP and LR 
algorithms performed better [23]. The AUC of the above 
two models reached more than 0.79, accompanied by 
high accuracy and specificity, reflecting strong discrimi-
natory ability. Despite progress in ML interpretabil-
ity, challenges remain due to differing perspectives on 
explanations. The consistency and variability among the 
four interpretability methods provided a comprehen-
sive understanding of feature importance. The consis-
tent recognition of features such as operation time, open 
thoracotomy, albumin level, and neutrophil count under-
scored their significance in the decision-making process, 
offering guidance for further analysis and interpreta-
tion. However, the variability in feature rankings across 
methods also reflects challenges in ML development. As 
ML models grow more complex, explaining their inter-
nal mechanisms becomes increasingly difficult [33]. The 
differences in feature importance rankings stem from 
the underlying principles of each method. SHAP values 
are based on game theory, providing a comprehensive 
explanation of feature contributions in the context of 
interactions between features [34]. Permutation Impor-
tance evaluates feature importance by measuring perfor-
mance changes when a feature is perturbed, focusing on 

individual contributions without considering interactions 
[35]. The Feature Importance method, based on impu-
rity reduction in tree-based models, may overestimate 
the importance of high-cardinality features. LIME offers 
local explanations by approximating the model’s behav-
ior around a specific instance but may not fully capture 
global feature contributions across the entire dataset 
[36]. These varying approaches can lead to discrepan-
cies in feature importance rankings, reflecting their dis-
tinct mechanisms for calculating feature contributions. 
The interactions between features can lead to different 
ranking results across methods. We chose LR as the pri-
mary model due to its intuitive interpretation of regres-
sion coefficients and lower risk of overfitting compared 
to complex models. Its simplicity and transparency make 
it suitable for clinical practice, where clear explanations 
are essential.

In our study, COPD, neutrophil count, albumin level, 
surgical incision, and operation time were independent 
risk factors associated with POI. Most studies have con-
firmed that COPD, operation time, and surgical incision 
are independently associated with POI [16, 17]. Serum 
albumin levels reflect the patient’s nutritional status and 
are considered negative for acute-phase protein, which 
is closely associated with increased postoperative com-
plications and mortality [37]. Low albumin levels may 
impair immune function and increase infection risk. 

Fig. 4 ROC curves of different algorithms. (A) ROC curves of seven models on the validation set. (B) ROC curves of the LR model on the training and 
validation sets. ROC, receiver operating characteristic; LR, logistic regression; DT, decision tree; RF, random forest; GBDT, gradient boosting decision tree; 
XGBoost, extreme gradient boosting; MLP, multilayer perceptron; SVM, support vector machine
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Moreover, decreased albumin levels may contribute to 
increased capillary permeability into the extravascular 
space, causing pleural effusion and pulmonary edema, 
and increasing the risk of POI [38]. Neutrophils reflect 
the inflammatory state during disease progression. Neu-
trophil recruitment and activation are vital for immune 
defense during pathogenic infections [39].

Some preventive measures can be taken for control-
lable risk factors in the final model, such as preoperative 
use of bronchodilators combined with glucocorticoids to 
treat COPD [40], increasing albumin levels, and improv-
ing malnutrition [41]. The LR-based nomogram may aid 
in risk assessment, stratification, and identifying high-
risk patients.

In our study, some factors reported in other studies 
were not identified as independent risk factors, such as 
RBC transfusion and urea nitrogen levels [42, 43]. This 
reflects the great variability of the elderly with major sur-
gery from other study populations, and demonstrates the 
importance of constructing a POI model for the elderly 
undergoing major surgery. Additionally, these studies 

mainly used the LR algorithm and did not explore the 
predictive performance of the various ML algorithms.

Compared with previous studies, our study had the 
following strengths: first, the research population was 
an elderly group with a high incidence; second, the type 
of surgery was major surgery, better targeting high-risk 
groups; third, in addition to using traditional algorithms, 
we explored model performance using popular ML algo-
rithms; fourth, we applied interpretability techniques to 
ML algorithms; fifthly, based on the nomogram and pre-
dicted probabilities, we stratified the population for bet-
ter use in clinical practice. In future work, integrating our 
model into electronic health records or clinical decision 
support systems could provide clinicians with real-time 
predictions during preoperative assessments, thereby 
aiding personalized interventions and optimizing periop-
erative management.

Our study had some limitations. First, as a single-cen-
ter retrospective study, it may have underestimated the 
incidence of POI. However, the large sample size and 
incidence rate align with literature reports. Second, the 

Fig. 5 Global feature importance of the RF model using four interpretability methods, ranked in descending order. (A) Ranking of feature importance 
indicated by Feature Importance plot. The matrix plot depicts displays the mean importance of each feature based on the reduction in impurity or infor-
mation gain. (B) Ranking of feature importance indicated by Permutation Importance plot. The plot showing the mean decrease in model performance 
when each feature is randomly permuted. (C) Ranking of feature importance indicated by SHAP summary plot. The mean SHAP values for each feature 
represent their contribution to the model’s output. (D) Ranking of feature importance indicated by LIME plot. The mean LIME values approximate the 
model’s behavior locally using an interpretable surrogate model. RF, random forest; SHAP, Shapley additive explanation; LIME: local interpretable model-
agnostic explanations
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model lacks external validation; therefore, further exter-
nal validation across multiple centers is needed in the 
future to assess its generalizability. Third, some parame-
ters related to mechanical ventilation were not collected. 
However, our model had good discriminative ability. 
Fourth, the use of LASSO regression for feature selec-
tion presents certain limitations. LASSO tends to select 
a small number of features and, when features are highly 
correlated, may randomly select one, overlooking others. 
This could lead to a reduction in model performance, as 
it may fail to capture all potential variable interactions. 
Fifth, although the LR model performed well in overall 
predictions, ML models may exhibit superior predictive 
power in cases with more features and more complex 
relationships. Future research will incorporate additional 
features to further explore the performance of various 
algorithms.

Conclusions
In our study, the incidence of POI after major surgery in 
the elderly patients was 10.03%, which was significantly 
associated with the length of postoperative hospitaliza-
tion. This study identified five simple and easy-to-collect 

independent risk factors for POI in elderly patients 
undergoing major surgery and compared the effective-
ness of different algorithms for predicting POI. Further-
more, we constructed a visualized nomogram of POI 
and performed risk stratification to guide the periopera-
tive clinical management of elderly patients undergoing 
major surgery.

Fig. 6 The nomogram based on the logistic regression algorithm. (A) Building a nomogram in the training cohort by incorporating five parametric pa-
rameters; (B) Online web server interface for the nomogram
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Table 2 Odds for POI by risk group in the development cohort 
and validation cohort
Group Development cohort

(n = 6637)
Validation cohort
(n = 2844)

Risk group OR (95%CI) P value OR (95%CI) P value
Low risk Reference Reference
Medium risk 5.62 (4.62, 6.84) < 0.001 6.55 (4.9, 8.76) < 0.001
High risk 13.98 (11.1, 17.48) < 0.001 10.84 (7.58, 15.51) < 0.001
POI, postoperative pulmonary infection; OR, odds ratio; 95%CI, 95% confidence 
interval

Fig. 7 The incidence of POI by risk group in the development cohort and validation cohort. POI, postoperative pulmonary infection
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