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Abstract
Background  This study investigates the impact of obesity on impulse oscillometry (IOS) parameters in individuals 
with asthma, chronic obstructive pulmonary disease (COPD), other lung diseases, and non-respiratory conditions. 
With rising obesity rates, understanding its effects on respiratory health is increasingly essential. We aimed to 
evaluate IOS parameters as predictors of respiratory dysfunction across different BMI categories, offering insights into 
managing complex cases involving obesity and lung disease.

Methods  We retrospectively analyzed IOS data from 1,947 patients referred to a secondary care allergy and lung 
clinic. IOS parameters assessed included total and peripheral airway resistance (R5 and R5-20), resonant frequency 
(Fres), and reactance area (AX), examined relative to BMI. The cohort included patients with asthma, COPD, other lung 
diseases, and controls. A weighted random forest model was used to assess the impact of IOS parameters on BMI 
prediction accuracy, adjusting for imbalances in BMI and disease groups.

Results  Obesity significantly affected IOS parameters, with R5-20, AX, and Fres emerging as key markers across all 
diagnostic groups. Elevated R5-20, AX and Fres values in obese patients, regardless of lung disease status, indicated 
increased small airway resistance and dysfunction. These IOS features demonstrated high predictive value in BMI-
related outcomes, suggesting they capture airway impairments tied to obesity beyond conventional respiratory 
diagnoses.

Conclusions  IOS parameters, particularly R5-20, AX, and Fres are sensitive to obesity-associated airway changes 
and may serve as valuable markers for identifying respiratory impairment in obese individuals with or without lung 
disease.

Keywords  Impulse oscillometry, Body mass index, Obesity, Respiratory dysfunction, Predictive modeling, Random 
forest analysis
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Background
The global increase in overweight and obesity rates has 
become a major public health challenge, with the World 
Health Organization (WHO) reporting that 43% of 
adults were classified as overweight and 16% as obese 
in 2022 [1]. This growing epidemic not only contributes 
to numerous metabolic disorders but also significantly 
affects respiratory health, particularly in individuals 
with chronic lung diseases such as asthma and chronic 
obstructive pulmonary disease (COPD). A growing body 
of evidence highlights a strong, independent association 
between elevated body mass index (BMI) and altera-
tions in respiratory mechanics, as measured by impulse 
oscillometry (IOS), across various pulmonary conditions 
[2–5].

Obesity negatively impacts lung function by reducing 
both static and dynamic lung volumes, particularly the 
expiratory reserve volume (ERV) and functional residual 
capacity (FRC). This decrease in lung volumes is linked to 
impaired airflow, which can exacerbate respiratory symp-
toms in patients with asthma and COPD [6].

Although previous studies have established a connec-
tion between BMI and IOS parameters, such as increased 
airway resistance and altered reactance, these investi-
gations have primarily focused on simple associations 
without exploring the predictive potential of these met-
rics [7, 8]. As a result, there is a growing need to identify 
which IOS parameters are most predictive of respiratory 
impairment in obese individuals with lung diseases. To 
address this gap, our study employs advanced statisti-
cal learning methods, particularly a robust random for-
est model, to predict and analyze the key IOS parameters 
associated with BMI in patients with asthma, COPD, 
and other lung diseases. Unlike previous research, which 
mainly focused on correlations, our approach enables us 
to identify and rank the predictors that most significantly 
influence BMI groups across various lung diseases.

Materials and methods
Patients
This study was a retrospective, observational cohort 
involving 1,947 adult patients referred to our secondary 
care allergy and lung clinic between 2022 and 2023. All 
participants had lung-related symptoms or were sus-
pected of reduced lung function. Patient records pro-
vided data from each visit.

Data collection
Lung function tests adhered to established protocols. 
Spirometry was performed using equipment from Medi-
cal Electronic Construction (M.E.C.) in line with ATS/
ERS standards (found at “mecrd.eu”) [9]. Fractional 
exhaled nitric oxide (Fe-NO) levels were measured with 
the NObreath device from Bedfont™.

For patients presenting with dyspnea or suspected lung 
disease, total lung capacity (TLC) and lung diffusion 
capacity for carbon monoxide (DLCO) were assessed using 
the M.E.C. PFT Body system, applying reference values 
from the Global Lung Function Initiative (GLI) [7]. For 
plethysmography conducted before March 2023, ECSC 
reference values were used [9]. Patients eligible for a 
methacholine challenge test (defined by FEV1 ≥ 1.5 L and 
≥ 60%, non-pregnant, and not breastfeeding) underwent 
bronchial provocation testing using a five-step dosimeter 
protocol with the aerosol provocation system (APS) from 
Viasys®, which automatically calculated administered 
doses (PD20) based on a single concentration of 25  mg/
mL methacholine (APS-SC) in SentrySuite version 3.20 
[10]. A PD20 ≤ 0.4 mg was classified as positive for bron-
chial hyperreactivity. Typically, Fe-NO and Impulse 
Oscillometry System (IOS) assessments were completed 
prior to spirometry and plethysmography.

Unlike traditional spirometry, IOS allows lung func-
tion assessment during relaxed tidal breathing, offering 
additional insights [11–13]. This study used the Vyntus™ 
IOS system, SentrySuite version 3.20 (Vyaire Medical, 
Hoechberg, Germany), which measures respiratory sys-
tem resistance (Rrs) and respiratory system reactance 
(Xrs) across various airway regions through small pres-
sure waves at different frequencies [13]. Reference val-
ues for Rrs and Xrs were estimated using equations that 
accounted for body position variability and potential eth-
nicity differences [14, 15].

We analyzed several IOS parameters, including R5 (the 
respiratory resistance at 5 Hz, representing the total air-
way resistance), R20 (the respiratory resistance at 20 Hz, 
representing resistance in the central airways), the dif-
ference between R5 and R20 (R5-20, reflecting peripheral 
airway resistance), the absolute difference between mea-
sured and predicted value for reactance at 5  Hz (Diff-
X5), resonant frequency (Fres), and reactance area (AX). 
These measurements collectively provide a detailed view 
of both central and peripheral airway functionality [13]. 
Small airway dysfunction (SAD) was defined as the pres-
ence of increased peripheral airway resistance and can be 
measured by R5-R20. R5-R20 has been validated in pre-
vious studies as a sensitive and specific marker of small 
airway mechanics [4]. SAD was assessed for its associa-
tion with BMI and respiratory disease groups to provide 
insights into the interplay between obesity and airway 
dysfunction.

BMI and diagnostic groups
BMI was categorized into the following groups:

1.	 Normal or Underweight, where BMI < 25 kg/m².
2.	 Overweight, where BMI 25–29.9 kg/m².
3.	 Obese, where BMI 30–39.9 kg/m².
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4.	 Morbidly Obese, where BMI ≥ 40 kg/m².

Patients were classified into diagnostic groups based on 
clinical diagnoses:

1.	 Asthma Only, i.e. Patients diagnosed exclusively with 
asthma.

2.	 COPD (± Asthma), i.e. Patients diagnosed with 
chronic obstructive pulmonary disease (COPD), with 
or without concurrent asthma.

3.	 Other Lung Conditions, i.e. Patients diagnosed 
with conditions such as interstitial lung disease, 
bronchiectasis, post-COVID syndrome, and lung 
infections.

4.	 Non-Lung Disease Conditions, i.e. Patients diagnosed 
with conditions unrelated to lung disease, including 
rhinitis, sinusitis, dysfunctional breathing, or reflux.

Obstructive sleep apnea (OSA)
In the subgroup of patients with BMI ≥ 30 kg/m2, it was 
documented whether they had been diagnosed with OSA 
(DG473).

Statistics
Statistical analysis
Analyses were performed using SPSS version 28 (IBM 
Corp., Armonk, NY) and R version 4.2.2 (R Foundation 
for Statistical Computing, Vienna, Austria) for random 
forest modeling [16]. To compare groups, a two-sample 
t-test or Wilcoxon rank-sum test was used, depending on 
the distribution of the continuous variables. Categorical 
data were analyzed using Fisher’s exact test. Statistical 
significance was defined as p < 0.05.

Random forest modeling
Random forest models were used to identify key factors 
predictive of BMI groups, with the technique chosen for 
its ability to balance bias and variance. By combining 
multiple decision trees, random forests reduce the risk of 
overfitting and provide stable variable importance mea-
sures across diagnostic groups. The analysis was based 
on two key metrics: Mean Decrease Accuracy (MDA), 
reflecting the percentage reduction in accuracy when a 
variable is permuted. Higher MDA scores indicate sig-
nificant predictors of BMI. The other metric is Mean 
Decrease Gini (MDG), measures a variable’s influence on 
reducing Gini impurity, providing insight into classifica-
tion accuracy [17].

The MDA and MDG values were classified into three 
impact levels: high (above the third quartile), moder-
ate (between the second and third quartiles), and low 
(below the second quartile). Given the variation in BMI 
group representation across diagnostic categories, a 
weighted random forest model was applied to account 

for this imbalance. By assigning greater weight to under-
represented BMI groups, this approach enhanced accu-
racy and reduced bias in feature importance assessments. 
Consequently, the model provides a more reliable evalua-
tion of the influence of IOS and clinical features on BMI, 
offering a refined understanding of BMI’s significance 
across different respiratory patient groups and strength-
ening diagnostic and management insights.

Results
IOS metrics and diagnostic classification
The dataset comprised 860 patients diagnosed with 
asthma alone (44.2%) and 179 with COPD co-occurring 
with asthma (11.6%) (Table  1). Notably, there were no 
significant differences in IOS values between patients 
with COPD alone and those with co-occurring asthma, 
leading to their combination for subsequent analyses 
under “COPD”.

Patients diagnosed with COPD exhibited notably 
higher IOS values compared to individuals in other diag-
nostic groups (Table 2). In contrast, asthma patients were 
generally younger, exhibited higher Fe-NO, FEV1%, FEV1/
FVC ratios, and DLCO levels, and had a lower total lung 
capacity (TLC). Asthma patients, compared to those with 
other lung diseases or no lung disease, demonstrated 
elevated Fe-NO levels, higher rates of positive bronchial 
methacholine provocation (BMP) tests, lower smoking 
prevalence, and generally higher IOS values.

Association between BMI and IOS
A significant positive association was observed between 
increasing BMI and elevated IOS values, alongside a 
decrease in FEV1% (Table 1). Among diagnostic groups, 
COPD patients exhibited the highest IOS values, fol-
lowed by those with asthma, other lung diseases, and 
those without lung disease (Fig. 1). Within each diagnos-
tic category, obese patients had significantly higher IOS 
values compared to those with a BMI below 24.9 kg/m² 
(Fig. 1; Table 3).

Weighted random forest analysis
Tables 4–7 present the Mean Decrease Accuracy (MDA) 
and Mean Decrease Gini (MDG) values, categorized by 
impact levels, illustrating how features such as age, sex, 
FEV1%, smoking status, and IOS parameters influence 
model performance and classification accuracy across 
diagnostic groups.

Key IOS variables by diagnostic group
Asthma patients
In patients with asthma only, variables with high-impact 
Mean Decrease Accuracy (MDA > 20), specifically R5-20, 
AX, and Fres, demonstrated substantial contributions to 
model accuracy and classification precision (see Table 4). 
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Notably, while all these variables showed high Mean 
Decrease Gini (MDG) values, AX had a slightly lower 
MDG due to its interaction with other variables, such as 
Fres, which affects its classification purity as an indepen-
dent predictor. This emphasizes the complementary role 
of these IOS metrics in accurately distinguishing asthma 
phenotypes.

Gender and R5% emerged as variables with moderate 
predictive value, exhibiting balanced MDA and MDG 
scores. This indicates that gender and R5% contribute 
reliably to classification accuracy, without significant 
trade-offs in model precision. By contrast, variables with 
lower MDA scores (MDA < 10), including Smoking, Diff-
X5, Age, FEV1%, and R20, were associated with reduced 
impact on classification accuracy. Although these vari-
ables contributed less to the primary model’s predictive 
strength, they still played a supporting role in reducing 
classification error.

COPD (± Asthma) patients
Among patients with COPD (± Asthma), including 
those with co-existing asthma, high-impact variables 
(MDA > 7.0) were identified as Gender, R5-20, AX, and 
Fres (Table 5). However, their lower Mean Decrease Gini 
(MDG) values suggest these variables primarily enhance 
predictive accuracy through interaction effects rather 
than strong standalone contributions. R5% and Gender 
demonstrated moderate influence in MDA, underscor-
ing their relevance in assessing both central and periph-
eral airways. Conversely, variables such as Smoking, 
Diff-X5, Age, FEV1%, and R20 showed limited impact on 
prediction accuracy across BMI categories. In addition, 
we found an association between IOS values and FEV1 /
Global Initiatives for Chronic Obstructive Lung Disease 
(GOLD) stages; GOLD 1: FEV1 ≥ 80%, GOLD 2: FEV1 
between 50 and 79.9%, GOLD 3: FEV1 between 30 and 
49.9%, GOLD 4: FEV1 < 30% (Table 8).

Other lung conditions
Among patients with non-lung disease conditions, high-
impact variables (MDA > 10) included R5-20, AX, and Fres, 
which were essential for both model accuracy and mini-
mizing classification errors (Table  6). R5% and Gender 
had moderate influence, with R5% being more influen-
tial in error reduction. Lower-impact variables included 
Smoking, Diff-X5, Age, FEV1%, and R20, which contrib-
uted to error minimization but had a lesser impact on 
overall model accuracy.

Non-Lung disease conditions
In individuals without lung disease, high-impact vari-
ables (MDA > 13) included R5-20, AX, and Fres, of which 
strongly influenced model accuracy, error reduction and 
classification. R5% and Gender played moderate roles, Ta
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while Smoking, Diff-X5, Age, FEV1%, and R20, contrib-
uted minimally to accuracy and error reduction (Table 7).

Common features across diagnostic groups
In all diagnostic groups, R5-20, AX, and Fres consistently 
stood out as the most influential variables for predict-
ing BMI-related outcomes. These features significantly 
enhanced model accuracy and reduced classification 
errors, either through individual effects or interactions, 
underscoring their critical role across a range of patient 
profiles.

Table 3  Pairwise comparison of R5%, R5-20, and AX in relation 
to the impact of obesity (body mass index) across disease 
classifications and its effect on IOS parameters (R5%, R5-20, AX, 
Fres, and Diff-X5). This table includes a comparison of our study’s 
findings with those from other available studies
Study group and 
comparison

Study 
(ref.)

Num-
ber of 
patients

Difference between 
groups
R5% R5-20 AX

BMI ≥40 kg/2

Asthma versus 
Non-Lung Disease 
Conditions

Dixon 
(4)

31 vs. 22 +20% 0.06 +150%

Our 29 vs. 13 +20%* 0.04* +60%*

Asthma
BMI ≥40 kg/2 vs. 
<25 kg/2

Can (2) 24 vs. 31 +50% 0.10 +400%
Our 29 vs. 301 +50%* 0.13* +325%*

COPD (±Asthma)
BMI ≥40 kg/2 vs. 
<25 kg/2

Our 16 vs. 118 +60%* 0.18* +160%*

Other Lung Condi-
tions BMI ≥40 kg/2 vs. 
<25 kg/2

Our 6 vs. 79 +45%* 0.13* +400%*

Non-Lung Disease 
Conditions BMI 
≥40 kg/2 vs. <30 kg/2

de 
Albu-
quer-
que 
(3)

28 vs. 31 +40% 0.10 Fres: 
+50%

Our 13 vs. 392 +40%* 0.11* +56%*
* p-level <0.001

Table 4  Performance metrics for IOS parameters in patients 
with asthma only. Results include random forest analysis for 
IOS parameters (R5%, R20, R5-20, AX, Fres, and Diff-X5), FEV1%, and 
clinical features (gender, smoking, age). Metrics include MDA, 
MDG, and their respective categories
Feature MDA MDG MDA_Category MDG_Category
R5-20 29.63 86.82 High High
AX 22.88 60.68 High Low
Fres 22.08 68.68 High High
R5% 15.51 52.15 Moderate Low
Gender 14.16 77.86 Moderate High
Smoking 7.90 63.38 Low Moderate
Diff-X5 6.91 56.15 Low Low
Age 4.19 7.66 Low Low
FEV1% 2.70 13.10 Low Low
R20 0.39 61.05 Low Moderate

Fig. 1  IOS measures across four BMI-groups (1: Underweight or normal weight, 2: Overweight, 3: Obese and 4: Morbidly obese) and four disease groups 
(1: asthma only, 2: COPD (± asthma), 3: lung disease conditions, and 4: non-lung disease conditions). Each subfigure presents a bar chart showing the level 
of (a) R5%, (b) R5-20, (c) AX, and (d) Fres
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In the subgroup of patients with obesity or morbid obe-
sity, 54 out of 524 (9.1%) were diagnosed with obstructive 
sleep apnea as a comorbidity. Patients with obstructive 
sleep apnea exhibited higher IOS values in the peripheral 
airways (Table 9).

Discussions
This study explored the influence of IOS parameters 
across varying BMI levels in patients with asthma, 
COPD (with or without asthma), other lung diseases, and 
healthy controls. Our findings reveal that both obesity 
and obstructive lung diseases, such as asthma and COPD, 
independently correlate with small airway dysfunction 
(SAD), with obesity exerting a more profound effect on 
IOS parameters than respiratory disease alone. These 
results align with previous studies and provide critical 
insights into the compounded impact of BMI and lung 
disease on small airways and respiratory health.

Across all diagnostic groups, R5-20, AX, and Fres 
emerged as the most impactful variables in predict-
ing BMI-related outcomes, as reflected by high Mean 
Decrease Accuracy (MDA > 7.0) values. This consistency 
highlights their critical roles in enhancing model accu-
racy and minimizing classification errors, either individ-
ually or through interaction effects, underscoring their 
broad relevance across diverse patient profiles. R5-20, 
which measures respiratory resistance, and AX, reflecting 

Table 5  Performance metrics for IOS parameters in patients 
with COPD with and without concurrent asthma. Results include 
random forest analysis for IOS parameters (R5%, R20, R5-20, AX, Fres, 
and Diff-X5), FEV1%, and clinical features (gender, smoking, age). 
Metrics include MDA, MDG, and their respective categories
Feature MDA MDG MDA_Category MDG_Category
R5-20 12.50 8.20 High Low
AX 8.57 23.11 High Low
Fres 7.76 22.45 High Low
R5% 7.56 25.91 Moderate Moderate
Gender 7.34 27.76 Moderate High
Smoking 4.91 25.03 Low Moderate
Diff-X5 2.49 29.49 Low High
Age 0.22 22.80 Low Low
FEV1% -0.07 6.10 Low Low
R20 -0.36 28.48 Low High

Table 6  Performance metrics for IOS parameters in patients with 
other lung conditions. Results include random forest analysis for 
IOS parameters (R5%, R20, R5-20, AX, Fres, and Diff-X5), FEV1%, and 
clinical features (gender, smoking, age). Metrics include MDA, 
MDG, and their respective categories
Feature MDA MDG MDA_Category MDG_Category
R5-20 17.72 19.27 High Moderate
AX 12.13 19.68 High High
Fres 10.84 19.85 High High
R5% 9.49 18.64 Moderate Moderate
Gender 7.00 4.01 Moderate High
Smoking 1.47 3.60 Low Low
Diff-X5 1.34 13.14 Low Low
Age 0.53 15.46 Low Low
FEV1% -2.37 14.13 Low Low
R20 -3.73 13.06 Low Low

Table 7  Performance metrics for IOS parameters in patients 
with non-lung disease conditions. Results include random forest 
analysis for IOS parameters (R5%, R20, R5-20, AX, Fres, and Diff-X5), 
FEV1%, and clinical features (gender, smoking, age). Metrics 
include MDA, MDG, and their respective categories
Feature MDA MDG MDA_Category MDG_Category
R5-20 20.29 33.56 High High
AX 17.34 46.86 High High
Fres 13.50 42.25 High High
R5% 12.66 35.00 Moderate Moderate
Gender 11.94 36.98 Moderate Low
Smoking 3.90 9.46 Low Low
Diff-X5 2.91 26.51 Low Low
Age 2.50 7.16 Low Moderate
FEV1% 1.78 28.18 Low Low
R20 -0.53 33.40 Low Low

Table 8  Association between IOS values and FEV1 according to 
GOLD stages
GOLD stage 1

FEV1 ≥80%; 
N=126

2
FEV1: 
50-79.9%; 
N=187

3
FEV1: 
30-49.9%; 
N=41

4
FEV1 
<30%; 
N=7

R5% 104.9 (30.6) 134.4 (41.0) 176.0 (48.7) 204.4 
(70.2)

R20, kPa/L/s 0.31 (0.06) 0.35 (0.08) 0.36 (0.08) 0.33 (0.10)
R5-20, kPa/L/s 0.06 (0.07) 0.14 (0.10) 0.28 (0.16) 0.33 (0.16)
AX, kPa/L 0.60 (0.73) 1.52 (1.26) 3.40 (1.97) 4.63 (2.20)
Fres, Hz 14.4 (5.5) 20.4 (6.6) 26.4 (5.3) 30.7 (3.7)
BMI, kg/m2 26.9 (4.9) 28.1 (6.1) 28.7 (7.0) 26.7 (5.9)
Continuous variables are presented as mean (SD)

Table 9  Comparison of patient characteristics, FEV1, diagnostic 
classification, and IOS results of OSA and non-OSA patients

BMI ≥30 kg/m2

IOS parameter OSA,
N=48 (9.2%)

Non-OSA, N=476 (90.8%) P-level

R5% 155.2 (43.1) 133.8 (41.3) <0.001
R20, kPa/L/s 0.36 (0.07) 0.35 (0.09) 0.40
R5-20, kPa/L/s 0.18 (0.13) 0.12 (0.10) 0.003
AX, kPa/L 1.78 (1.57) 1.22 (0.10) 0.017
Fres, Hz 20.6 (6.3) 18.2 (6.0) 0.013
BMI, kg/m2 37.4 (6.2) 34.4 (4.3) <0.001
Age, years 62.1 (12.7) 57.3 (15.4) 0.06
Females, % 43.8 62.6 0.04
FEV1, % 79.3 (19.1) 84.5 (16.1) 0.09
Asthma, N 20 (41.7%) 219 (46.0%) 0.36
COPD ±Asthma, N 12 (25.0%) 84 (17.6%) 0.45
Orther disease, N 16 (33.3%) 173 (36.3%) 0.36
Continuous variables are presented as mean (SD)
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airway reactance, proved especially valuable in assess-
ing small airway function, while Fres contributed to the 
evaluation of overall airway mechanics. However, the rel-
atively low Mean Decrease Gini (MDG) values for these 
variables suggest that their predictive power likely stems 
from interaction effects rather than strong independent 
influence. This aligns with our broader conclusion that 
both obesity and lung disease significantly influence 
small airway function, but their combined effects, medi-
ated by complex interactions among IOS parameters; 
yield the most accurate predictions.

This observation is consistent with findings by Dixon 
et al. [4], who reported a pronounced impact of obe-
sity on IOS parameters among asthmatic patients with 
high BMI. The distinctive characteristics of their con-
trol group (notably low IOS values) compared to ours 
and other studies [18, 19], might amplify obesity’s effects 
on IOS measures in their sample, underscoring the 
importance of careful control group selection. Similarly, 
Oppenheimer et al. [20] noted a substantial increase in 
R5-20 among obese individuals with self-reported asthma 
compared to controls, reinforcing the role of obesity in 
narrowing airways, even in the absence of a formal respi-
ratory disease diagnosis.

In studies focused on severe asthma, such as that by 
Chan et al. [2], obesity’s impact on IOS parameters par-
allels our findings across all asthma severities, while 
Albuquerque et al. [3] observed that obesity in patients 
without lung disease elevates IOS parameters like R5%, 
R5-20, and Fres. This effect is likely due to reduced func-
tional residual capacity (FRC), promoting airway narrow-
ing and closure, with metabolic inflammation in “obese 
asthma” possibly exacerbating airway hyperresponsive-
ness [21].

Our findings suggest that integrating IOS measure-
ments into routine spirometry may enhance detection of 
SAD, particularly in patients with high BMI, as IOS can 
reveal respiratory dysfunction where spirometry alone 
might not [22, 23]. Notably, the improvements in IOS 
following weight loss post-bariatric surgery [20], fur-
ther support its potential as a sensitive marker of respi-
ratory function, especially in patients with higher BMI. 
Additionally, IOS has shown sensitivity in identifying 
uncontrolled asthma [24–26], underscoring its clinical 
relevance for detecting subtle airway abnormalities.

Obstructive sleep apnea (OSA) is a condition marked 
by recurrent upper airway obstruction and is commonly 
associated with obesity [27]. OSA is linked to increased 
R5 and decreased X5 - even when patients are awake and 
in seated position [28, 29]. Güngördü et al. examined 
IOS indices between obese and non-obese patients with 
OSA and found significantly higher R5, R5-20, AX, and Fres 
values in the obese group compared to the non-obese 
counterparts [29]. However, no statistically significant 

differences were observed in R20. Their findings sug-
gest that both OSA and obesity may contribute to small 
airway dysfunction. Our results further support a link 
between OSA and SAD; however, the limited number 
of patients prevented us from determining whether this 
association is independent.

Future studies should explore the interplay between 
OSA, COPD, asthma and obesity - considering body 
composition – to better understand their combined 
impact on small airways function.

Nevertheless, further research is needed to establish 
IOS parameters as independent predictors of respiratory 
disease. While R5-20, AX, and Fres consistently contrib-
uted to predictive models, other variables like Gender 
and R5% had variable impacts across patient groups, sug-
gesting potential for more tailored models. Future studies 
examining interaction effects could clarify IOS param-
eters’ role in personalized respiratory assessment and 
treatment.

Strengths and limitations
This study’s real-life design, featuring a broad and repre-
sentative sample, enhances generalizability. However, the 
absence of specific data on central vs. peripheral obesity 
or body composition (fat vs. fat-free mass) represents a 
limitation, as central obesity has been linked more closely 
to FRC and expiratory reserve volume (ERV) reductions 
[22, 30]. Another potential limitation of our study is the 
lack of data on OSA in those patients with BMI less than 
30  kg/m2, which may influence IOS parameters. Addi-
tionally, while asthma diagnoses were confirmed by pul-
monary specialists, some patients may not align with 
clinical trial eligibility criteria, potentially limiting com-
parability with rigorously controlled samples [31, 32]. 
Furthermore, the absence of disease severity scores for 
asthma is a limitation of our study, as disease severity 
may influence IOS parameters [33]. Intrabreath oscillom-
etry is a highly sensitive tool for evaluating disease con-
trol in adults with severe asthma [33]. However, we have 
incorporated Fe-NO and FEV1, which are associated with 
asthma activity [34].

Conclusions
This study underscores the significant influence of obe-
sity on respiratory mechanics, particularly in relation to 
small airway dysfunction (SAD), with the effects most 
pronounced in individuals with asthma, COPD, or both. 
Our findings support previous research [18–20], by indi-
cating that obesity not only compounds the airway limi-
tations caused by respiratory diseases but also introduces 
additional restrictions independently. IOS parameters; 
especially R5-20, AX, and Fres; emerged as high-impact 
variables in predicting BMI-related outcomes across 
all diagnostic groups, demonstrating strong utility in 
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enhancing model accuracy and capturing subtle airway 
alterations that may otherwise be undetectable with spi-
rometry alone.

The consistently high Mean Decrease Accuracy (MDA) 
values for R5-20, AX, and Fres highlight their importance 
in predictive accuracy across diverse patient profiles, 
although their lower Mean Decrease Gini (MDG) values 
suggest that interaction effects likely drive their predic-
tive contributions. These findings suggest that integrat-
ing IOS into routine clinical practice, in conjunction with 
spirometry, could be particularly beneficial for patients 
with obesity or respiratory symptoms, even when spi-
rometry results appear normal. Further research examin-
ing the relationship between IOS parameters and specific 
body composition factors, particularly central fat distri-
bution, could clarify the role of central obesity in amplify-
ing small airway limitations. Additionally, future studies 
exploring the predictive potential of IOS parameters for 
clinical outcomes in obese patients with respiratory dis-
eases may inform more targeted interventions, such as 
weight management strategies, that could improve respi-
ratory health and overall quality of life.

Abbreviations
IOS	� Impulse Oscillometry System
BMI	� Body Mass Index
COPD	� Chronic Obstructive Pulmonary Disease
OSA	� Obstructive Sleep Apnea
SAD	� Small Airway Dysfunction
R5	� Resistance at 5 Hz
R20	� Resistance at 20 Hz
R5-20	� Difference between Resistance at 5 Hz and 20 Hz (Peripheral Airway 

Resistance)
AX	� Reactance Area
FRC	� Functional Residual Capacity
ERV	� Expiratory Reserve Volume
FEV1	� Forced Expiratory Volume in 1 s
DXA	� Dual-energy X-ray Absorptiometry
MDA	� Mean Decrease Accuracy
MDG	� Mean Decrease Gini
Fe-NO	� Fractional Exhaled Nitric Oxide
FVC	� Forced Vital Capacity
TLC	� Total Lung Capacity
DLCO	� Diffusion Capacity for Carbon Monoxide
PD20	� Dose of Methacholine Resulting in 20% Decrease in FEV1

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​8​9​0​-​0​2​5​-​0​3​6​1​9​-​8.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
The authors would like to express their gratitude to all staff members involved 
in patient data collection.

Author contributions
Author 1 was responsible for data collection, contributed to the study 
design, performed part of the data analysis, and participated in manuscript 
preparation and writing. Authors 2 and 3 contributed to the interpretation of 

the results and provided critical insights. Author 4 performed the data analysis 
and wrote the most part of the manuscript. All authors read, reviewed and 
approved the final manuscript.

Funding
Open access funding provided by Copenhagen University
This research has not received financial support.

Data availability
The dataset supporting the conclusions of this article is avalable on Figshare 
and can be accessed at: ​h​t​t​p​​s​:​/​​/​f​i​g​​s​h​​a​r​e​​.​c​o​​m​/​a​r​​t​i​​c​l​e​​s​/​d​​a​t​a​s​​e​t​​/​T​h​​i​s​_​​d​a​t​a​​s​e​​t​_​c​​o​
n​t​​a​i​n​s​​_​i​​n​f​o​​r​m​a​​t​i​o​n​​_​r​​e​l​a​​t​e​d​​_​t​o​_​​p​h​​y​s​i​​o​l​o​​g​i​c​a​​l​_​​m​e​a​​s​u​r​​e​m​e​n​​t​s​​_​a​n​​d​_​B​​o​d​y​_​​M​a​​s​
s​_​​I​n​d​​e​x​_​B​​M​I​​_​a​m​​o​n​g​​_​i​n​d​​i​v​​i​d​u​​a​l​s​​_​I​t​_​​h​a​​s​_​b​​e​e​n​​_​u​s​e​​d​_​​f​o​r​​_​s​t​​a​t​i​s​​t​i​​c​a​l​​_​a​n​​a​l​y​s​​e​s​​
_​t​o​​_​g​e​​n​e​r​a​​t​e​​_​i​n​​s​i​g​​h​t​s​_​​i​n​​t​o​_​​v​a​r​​i​o​u​s​​_​h​​e​a​l​​t​h​_​​a​n​d​_​​p​h​​y​s​i​o​l​o​g​i​c​a​l​_​f​a​c​t​o​r​s​_​/​2​8​2​
9​7​2​0​5​?​f​i​l​e​=​5​1​9​8​4​2​9​9.

Declarations

Ethics approval and consent to participate
This study was conducted in accordance with the Declaration of Helsinki. The 
Regional Health Research Ethics Committees in the Capital Region in Denmark 
waived the need for formal ethical approval of the project (no. F-24081729). 
Informed consent from participants in this retrospective study was not 
obtained.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 5 December 2024 / Accepted: 24 March 2025

References
1.	 Obesity and Overweight [​h​t​t​p​s​:​​​/​​/​w​w​​w​.​​w​h​​o​​.​i​​n​​t​/​n​​e​​w​​s​-​r​​​o​o​m​​/​f​​a​​c​t​​-​s​h​​​e​e​t​​s​/​d​​e​​t​​a​i​l​​

/​o​b​​​e​s​i​​t​​y​​-​a​n​d​-​o​v​e​r​w​e​i​g​h​t]
2.	 Chan R, Lipworth B. Clinical impact of obesity on oscillometry lung 

mechanics in adults with asthma. Ann Allergy Asthma Immunol. 
2023;131(3):338–e342333.

3.	 Albuquerque CG, Andrade FM, Rocha MA, Oliveira AF, Ladosky W, Victor 
EG, Rizzo JA. Determining respiratory system resistance and reactance by 
impulse oscillometry in obese individuals. J Bras Pneumol. 2015;41(5):422–6.

4.	 Dixon AE, Poynter ME, Garrow OJ, Kaminsky DA, Tharp WG, Bates JHT. 
Peripheral airway dysfunction in obesity and obese asthma. Chest. 
2023;163(4):753–62.

5.	 Alter P, Rabe KF, Schulz H, Vogelmeier CF, Jorres RA. Influence of body mass 
on predicted values of static hyperinflation in COPD. Int J Chron Obstruct 
Pulmon Dis. 2018;13:2551–5.

6.	 Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir 
Med. 2018;12(9):755–67.

7.	 Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I, 
Cooper BG, Culver B, Derom E, Hall GL et al. ERS/ATS technical standard on 
interpretive strategies for routine lung function tests. Eur Respir J 2022, 60(1).

8.	 Klitgaard A, Lokke A, Hilberg O. Impulse oscillometry as a diagnostic test for 
pulmonary emphysema in a clinical setting. J Clin Med 2023, 12(4).

9.	 Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung 
volumes and forced ventilatory flows. Eur Respir J. 1993;16(6 Suppl):5–40.

10.	 Schulze J, Rosewich M, Riemer C, Dressler M, Rose MA, Zielen S. Methacholine 
challenge–comparison of an ATS protocol to a new rapid single concentra-
tion technique. Respir Med. 2009;103(12):1898–903.

11.	 Sarkar S, Jadhav U, Ghewade B, Sarkar S, Wagh P. Oscillometry in lung func-
tion assessment: A comprehensive review of current insights and challenges. 
Cureus. 2023;15(10):e47935.

12.	 Kaminsky DA, Simpson SJ, Berger KI, Calverley P, de Melo PL, Dandurand R, 
Dellaca RL, Farah CS, Farre R, Hall GL et al. Clinical significance and applica-
tions of oscillometry. Eur Respir Rev 2022, 31(163).

13.	 Bickel S, Popler J, Lesnick B, Eid N. Impulse oscillometry: interpretation and 
practical applications. Chest. 2014;146(3):841–7.

https://doi.org/10.1186/s12890-025-03619-8
https://doi.org/10.1186/s12890-025-03619-8
https://figshare.com/articles/dataset/This_dataset_contains_information_related_to_physiological_measurements_and_Body_Mass_Index_BMI_among_individuals_It_has_been_used_for_statistical_analyses_to_generate_insights_into_various_health_and_physiological_factors_/28297205?file=51984299
https://figshare.com/articles/dataset/This_dataset_contains_information_related_to_physiological_measurements_and_Body_Mass_Index_BMI_among_individuals_It_has_been_used_for_statistical_analyses_to_generate_insights_into_various_health_and_physiological_factors_/28297205?file=51984299
https://figshare.com/articles/dataset/This_dataset_contains_information_related_to_physiological_measurements_and_Body_Mass_Index_BMI_among_individuals_It_has_been_used_for_statistical_analyses_to_generate_insights_into_various_health_and_physiological_factors_/28297205?file=51984299
https://figshare.com/articles/dataset/This_dataset_contains_information_related_to_physiological_measurements_and_Body_Mass_Index_BMI_among_individuals_It_has_been_used_for_statistical_analyses_to_generate_insights_into_various_health_and_physiological_factors_/28297205?file=51984299
https://figshare.com/articles/dataset/This_dataset_contains_information_related_to_physiological_measurements_and_Body_Mass_Index_BMI_among_individuals_It_has_been_used_for_statistical_analyses_to_generate_insights_into_various_health_and_physiological_factors_/28297205?file=51984299
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight


Page 10 of 10Ringbaek et al. BMC Pulmonary Medicine          (2025) 25:218 

14.	 Drews D, Vogel J, Wilke A, Smith HJ. [Impulse oscillometry and body position]. 
Pneumologie. 1997;51(Suppl 2):478–82.

15.	 Schulz H, Flexeder C, Behr J, Heier M, Holle R, Huber RM, Jorres RA, Nowak D, 
Peters A, Wichmann HE, et al. Reference values of impulse oscillometric lung 
function indices in adults of advanced age. PLoS ONE. 2013;8(5):e63366.

16.	 R. A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing [https://www.R-project.org]

17.	 Becker T, Rousseau AJ, Geubbelmans M, Burzykowski T, Valkenborg 
D. Decision trees and random forests. Am J Orthod Dentofac Orthop. 
2023;164(6):894–7.

18.	 Al-Alwan A, Bates JHT, Chapman DG, Kaminsky DA, DeSarno MJ, Irvin CG, 
Dixon AE. The nonallergic asthma of obesity A matter of distal lung compli-
ance. Am J Resp Crit Care. 2014;189(12):1494–502.

19.	 Oppenheimer BW, Berger KI, Segal LN, Stabile A, Coles KD, Parikh M, Goldring 
RM. Airway dysfunction in obesity: response to voluntary restoration of end 
expiratory lung volume. PLoS ONE 2014, 9(2).

20.	 Oppenheimer BW, Macht R, Goldring RM, Stabile A, Berger KI, Parikh M. Distal 
airway dysfunction in obese subjects corrects after bariatric surgery. Surg 
Obes Relat Dis. 2012;8(5):582–9.

21.	 Shah NM, Kaltsakas G. Respiratory complications of obesity: from early 
changes to respiratory failure. Breathe 2023, 19(1).

22.	 Haslam DW, James WPT. Obes Lancet. 2005;366(9492):1197–209.
23.	 Roshan Lal T, Cechinel LR, Freishtat R, Rastogi D. Metabolic contributions to 

pathobiology of asthma. Metabolites 2023, 13(2).
24.	 Sharshar RS, Mohamed AS. The utility of impulse oscillometry in asthma: A 

comparison of spirometry versus impulse oscillometry system. Egypt J Chest 
Dis Tu. 2017;66(2):207–9.

25.	 Galant SP, Komarow HD, Shin HW, Siddiqui S, Lipworth BJ. The case for 
impulse oscillometry in the management of asthma in children and adults. 
Ann Allerg Asthma Im. 2017;118(6):664–71.

26.	 Kraft M, Richardson M, Hallmark B, Billheimer D, Van den Berge M, Fabbri 
LM, Van der Molen T, Nicolini G, Papi A, Rabe KF, et al. The role of small 
airway dysfunction in asthma control and exacerbations: a longitudinal, 

observational analysis using data from the ATLANTIS study. Lancet Resp Med. 
2022;10(7):661–8.

27.	 Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, 
Hamilton GS, Dharmage SC. Prevalence of obstructive sleep apnea in the 
general population: A systematic review. Sleep Med Rev. 2017;34:70–81.

28.	 Abdeyrim A, Li N, Shao L, Heizhati M, Wang Y, Yao X, Abulikemu S, Zhang D, 
Chang G, Yin T, et al. What can impulse oscillometry and pulmonary function 
testing tell Us about obstructive sleep apnea: a case-control observational 
study? Sleep Breath. 2016;20(1):61–8.

29.	 Gungordu N, Ismayilova A, Aliyeva N, Alhelou TAM, Ozdil Eser A, Vardalo-
glu Koyuncu I, Ensen N, Atahan E, Borekci S, Gemicioglu B. Small airway 
resistance in obese and Nonobese patients with obstructive sleep apnea 
syndrome using impulse oscillometry. Turk J Med Sci. 2024;54(2):441–8.

30.	 Salome CM, King GG, Berend N. Physiology of obesity and effects on lung 
function. J Appl Physiol. 2010;108(1):206–11.

31.	 Blonde L, Khunti K, Harris SB, Meizinger C, Skolnik NS. Interpretation and 
impact of Real-World clinical data for the practicing clinician. Adv Ther. 
2018;35(11):1763–74.

32.	 Herland K, Akselsen JP, Skjonsberg OH, Bjermer L. How representative are 
clinical study patients with asthma or COPD for a larger real life population of 
patients with obstructive lung disease? Resp Med. 2005;99(1):11–9.

33.	 Chiabai J, Friedrich FO, Fernandes MTC, Serpa FS, Antunes MOB, Neto FB, 
Makan G, Hantos Z, Sly PD, Jones MH. Intrabreath oscillometry is a sensitive 
test for assessing disease control in adults with severe asthma. Ann Allergy 
Asthma Immunol. 2021;127(3):372–7.

34.	 Savran O, Bonnelykke K, Ulrik CS. Characteristics of adults with severe asthma 
in childhood: A 60-Year Follow-Up study. Chest. 2024;166(4):676–84.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://www.R-project.org

	﻿The influence of obesity on IOS parameters in asthma, COPD, and other lung diseases: analyzed by random forest
	﻿Abstract
	﻿Background
	﻿Materials and methods
	﻿Patients
	﻿Data collection
	﻿BMI and diagnostic groups
	﻿Obstructive sleep apnea (OSA)

	﻿Statistics
	﻿Statistical analysis
	﻿Random forest modeling

	﻿Results
	﻿IOS metrics and diagnostic classification
	﻿Association between BMI and IOS
	﻿Weighted random forest analysis
	﻿Key IOS variables by diagnostic group
	﻿Asthma patients
	﻿COPD (± Asthma) patients
	﻿Other lung conditions
	﻿Non-Lung disease conditions


	﻿Common features across diagnostic groups
	﻿Discussions
	﻿Strengths and limitations

	﻿Conclusions
	﻿References


