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Abstract
Background  Chronic obstructive pulmonary disease (COPD) is a global public health challenge and a major cause 
of death. The lactate dehydrogenase to albumin ratio (LAR) is a simple and practical indicator of disease prognosis, 
but its prognostic value in acute exacerbation of COPD (AECOPD) remains unclear. Therefore, we aimed to explore the 
prognostic value of LAR for the short-term all-cause mortality risk in patients with AECOPD.

Methods  This retrospective cohort study included 654 patients with AECOPD from the MIMIC-IV database. LAR 
was analyzed after natural logarithm transformation and the patients were divided into three groups. The clinical 
outcome was the 1-month and 3-months all-cause mortality. The relationship between LAR and all-cause mortality 
was assessed using Kaplan–Meier survival analysis and a Cox regression model. Generalized additive models were 
employed to identify non-linear relationships, and a subgroup analysis was performed to determine the stability of 
the results.

Results  The study showed that LAR levels significantly and positively correlated with short-term all-cause mortality 
in patients with AECOPD. Compared to the low LAR group, patients in the medium LAR group had a significantly 
increased 1-month all-cause mortality risk, with a hazard ratio (HR) of 1.74 (95% [Confidence Interval, CI] 1.16–2.63, 
P = 0.008). Patients in the high LAR group had an even higher 1-month all-cause mortality risk, with an HR of 2.58 
(95% CI 1.75–3.80, P < 0.001). For 3-month all-cause mortality, patients in the medium LAR group had an HR of 1.54 
(95% CI 1.10–2.16, P = 0.012), while those in the high LAR group had an HR of 2.18 (95% CI 1.58–3.01, P < 0.001). The 
results remained stable in all three adjusted models and in the subgroup analyses. The relationship between LAR and 
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Introduction
Chronic obstructive pulmonary disease (COPD) is a pub-
lic health concern. There were approximately 400  mil-
lion COPD patients worldwide in 2019, with 3.23 million 
deaths, 90% of which occurred in low- and middle-
income countries [1, 2]. Moreover, with the acceleration 
in population aging and extension of life expectancy, 
the prevalence and mortality of COPD are expected to 
increase by 2030 [3]. Independent factors related to poor 
prognosis in patients with COPD include advanced age, 
low body mass index, comorbidities, history of hospi-
talization due to acute exacerbation, clinical severity of 
acute exacerbation indicators, the need for long-term 
oxygen therapy after discharge, and adherence to medi-
cation maintenance treatment [4]. Acute exacerbation of 
COPD (AECOPD) is an important event in the clinical 
course of COPD that affects quality of life and is closely 
related to patient prognosis [5]. Currently, the progno-
sis of AECOPD mainly relies on clinical parameters and 
pulmonary function tests; however, these methods have 
limitations in predicting short-term mortality risk, such 
as the lack of recent pulmonary function data from the 
stable period when patients are admitted for acute exac-
erbation. A systematic review included 9–12 prognostic 
factors as prognostic tools, which are restricted in clini-
cal applications [6]. Therefore, identifying simple and 
practical biomarkers is of great significance to improve 
the prognosis of Intensive Care Unit (ICU) patients with 
AECOPD and reduce mortality.

Lactate dehydrogenase (LDH) is an enzyme widely dis-
tributed in human tissues that is involved in the inter-
conversion of lactic acid and pyruvic acid and is closely 
related to cellular metabolic activities [7]. Some studies 
have indicated that LDH levels are correlated with the 
prognosis of many diseases, including sepsis [8], tumors 
[9], and stroke [10]. Albumin (Alb), the main protein in 
plasma, is often used as an indicator to assess the nutri-
tional status and inflammatory response of patients [11]. 
The LDH-to-Alb ratio (LAR) combines the characteris-
tics of both indicators and may reflect the comprehen-
sive impact of the body’s metabolism and inflammatory 
state, which has a certain predictive value for short-term 
adverse outcomes in various diseases such as sepsis 
[12], pulmonary embolism [13], and acute kidney injury 
[14]. Although LDH and Alb have not traditionally been 

recognized as key indicators of COPD, their importance 
in reflecting systemic inflammation and metabolic sta-
tus has been increasingly highlighted in recent years. 
For example, elevated LDH levels may indicate tissue 
hypoxia, inflammation, and oxidative stress, which are 
common pathological processes in AECOPD [15, 16]. 
Similarly, hypoalbuminemia is often associated with poor 
nutritional status and increased inflammatory burden, 
both of which are detrimental to the prognosis of COPD 
patients [17]. Therefore, the LDH-to-Alb ratio (LAR) may 
serve as a potential prognostic marker that integrates 
these metabolic and inflammatory aspects. However, its 
role in the prognosis of AECOPD patients has not been 
evaluated.

Therefore, this study aimed to explore the relation-
ship between LAR and the prognosis of patients with 
AECOPD and to provide new prognostic assessment 
indicators for clinical practice.

Methods
Study design and data source
This retrospective cohort study included 654 cases of 
AECOPD from the Medical Information Market for 
Intensive Care-IV (MIMIC-IV) database that met the 
inclusion criteria. MIMIC-IV is a public clinical dataset 
maintained by the Massachusetts Institute of Technol-
ogy that was released to the public in 2020 and updated 
(version 3.0) in 2024 [18]. The database contains detailed 
medical data of more than 90,000 ICU patients collected 
by Beth Israel Deaconess Medical Center from 2008 to 
2022, involving demographics, vital signs, treatment 
measures, nursing records, imaging results, and dis-
charge summaries, etc [18]. This study was authorized to 
use the database (authorization number ID: 55303142, 
64990539). Because the analysis used publicly available 
de-identified data, institutional review board review at 
the Beth Israel Deaconess Medical Center was waived, 
and informed consent procedures were not needed. Clin-
ical trial number (Not applicable).

Inclusion and exclusion criteria
This study initially included patients diagnosed with 
COPD according to the International Classification of 
Diseases (ICD) codes, with the specific codes as follows: 
49,121 and 49,122 in ICD-9 and J44, J440, J441, and J449 

all-cause mortality due to AECOPD was non-linear, with inflection points at 8.13 and 6.05 for 1-month and 3-month 
all-cause mortality, respectively.

Conclusions  Elevated LAR is an independent predictive indicator of short-term all-cause mortality risk in patients 
with AECOPD and can be used to improve decision-making for the clinical management of these patients.

Clinical trial number  Not applicable.

Keywords  Albumin, Lactate dehydrogenase to albumin, Mortality, Chronic obstructive pulmonary disease, MIMIC IV



Page 3 of 10Ding et al. BMC Pulmonary Medicine          (2025) 25:154 

in ICD-10. On this basis, patients with AECOPD were 
further screened, with codes 49,121 and 49,122 and 
ICD-9 and J440, J441 in ICD-10. To avoid data duplica-
tion, this study only considered the patients’ first hos-
pitalization records. The index date for each patient 
was defined as the date of the first hospital admission 
recorded in the MIMIC-IV database. This date served as 
the reference point for both exposure assessment (mea-
surement of LAR) and outcome evaluation (all-cause 
mortality within 1 and 3 months). Patients with a hospi-
tal stay of less than 24 h and missing LDH and Alb data 
were excluded. All selected patients were aged > 18 years 
(Fig. 1).

Data extraction
We collected the clinical information of the patients, 
including demographic characteristics (age, sex, race), 
vital signs (heart rate, blood pressure, respiration rate, 
oxygen saturation, body temperature) recorded within 
the initial 24-hour period, first hematological tests (blood 

count, liver and kidney function index, blood glucose, 
and electrolytes) taken within 24 h of admission, comor-
bidities (hypertension, diabetes mellitus, liver disease, 
and obesity), ventilator use, and sequential organ failure 
assessment (SOFA) score. The clinical outcome was the 
all-cause mortality of patients within 1 and 3 months 
after admission. Before data analysis, we excluded any 
variables with more than 20% missing data and handled 
the remaining missing values using multiple imputation 
methods.

Statistical analysis
Given that the distribution of LAR did not follow a nor-
mal distribution, we performed a natural logarithmic 
transformation of LAR (Log2 LAR) and treated it as a 
continuous variable for analysis. Subsequently, the data 
were divided into three groups according to the tertiles 
of Log2 LAR: low, medium, and high LAR groups. For 
continuous variables, we used the mean ± standard devia-
tion or median (interquartile range) to represent and 

Fig. 1  The flowchart of patient selection
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categorical variables were presented through frequency 
and percentage. To identify statistical differences in 
means and proportions between groups, we used a one-
way analysis of variance (ANOVA), the Kruskal-Wallis H 
test, and the chi-square test. Kaplan-Meier (KM) survival 
analysis and the log-rank test were used to assess the dif-
ferences in all-cause mortality among patients in the dif-
ferent LAR groups.

To ensure the validity of the Cox regression model, 
we assessed the proportional hazards assumption using 
Schoenfeld residuals. The weighted analysis showed that 
the global P-value for Schoenfeld residuals exceeded 0.05, 
indicating that the proportional hazards assumption was 
met (see Supplementary Figure S1).

To ensure the robustness of our Cox regression model, 
we calculated the variance inflation factors (VIF) for all 
covariates included in the model. All VIF values were less 
than 3, indicating that multicollinearity was within an 
acceptable range.

We constructed four statistical models to analyze the 
data: Model 0 without any adjustment; Model I adjusted 
for age, gender, and race; Model II further adjusted for 
hypertension, diabetes, coronary artery disease (CAD), 
heart failure, chronic kidney disease, liver disease, malig-
nant tumors, and obesity on the basis of Model I. Model 
III added heart rate, respiratory rate, systolic blood pres-
sure (SBP), blood oxygen saturation, sodium ions, potas-
sium ions, glucose, blood urea nitrogen (BUN), creatinine 
(Cr), hemoglobin, white blood cell count (WBC), platelet 
(PLT), the use of ventilator, SOFA, and other variables on 
the basis of Model II.

In addition, we employed generalized additive models 
(GAM) to explore the non-linear relationship between 
LAR and AECOPD mortality; when a non-linear asso-
ciation was found, we used segmented linear regression 
models to determine the threshold effect of LAR on 
mortality. We also performed stratified and interaction 
analyses of age, sex, and the above-mentioned chronic 
diseases. All results were shown using hazard ratios 
(HRs) and 95% confidence intervals (CI), with statisti-
cal significance set at a P-value < 0.05. R software version 
3.3.2 and EmpowerStats 4.0 were used for all statistical 
analyses.

Results
Baseline characteristics
A total of 654 AECOPD patients who met the criteria 
were included in the study, evenly distributed into three 
LAR level groups: low LAR group (2.68–4.71) with 218 
cases; medium LAR group (4.71–6.09) with 218 cases; 
high LAR group (6.09–15.45) with 218 cases. The aver-
age age of the patients was 61.43 ± 16.91 years, and the 
proportion of females was approximately 48.62%. Within 
1 and 3 months of admission, there were 178 and 242 

patient deaths, respectively; the specific baseline charac-
teristics are detailed in Table 1. There were no statistically 
significant differences in age, sex, race, or prevalence of 
hypertension, diabetes, heart failure, or other diseases 
among the three LAR groups. Compared with the low-
LAR group, patients in the medium- and high-LAR 
groups had lower SBP, higher serum sodium, BUN, Cr, 
and WBC levels, and a higher prevalence of CAD.

Kaplan-Meier curves
We created Kaplan-Meier survival plots for the patients 
(Fig. 2), and the results showed that compared with the 
low LAR group, the mortality of patients in the medium 
and high LAR groups increased significantly (P < 0.05).

Association between LAR and all-cause mortality 
of AECOPD
Before conducting the Cox regression analysis, we 
assessed the proportional hazards assumption using 
Schoenfeld residuals. The weighted analysis showed that 
the global P-value for Schoenfeld residuals exceeded 
0.05, indicating that the proportional hazards assump-
tion was met (see Supplementary Figure S1). To ensure 
the robustness of our Cox regression model, we calcu-
lated the variance inflation factors (VIF) for all covariates 
included in the model. All VIF values were less than 3, 
indicating that multicollinearity was within an acceptable 
range. We then established four statistical models to ana-
lyze the data using Cox proportional risk analysis. Com-
pared with the low LAR group, the 1-month all-cause 
mortality risk of patients in the medium and high LAR 
groups was significantly increased, with the HRs of 1.74 
(95%CI 1.16–2.63, P = 0.008) and 2.58 (95%CI 1.75–3.80, 
P < 0.001), respectively. The 3-month all-cause mortal-
ity risk showed similar results, with the HRs of 1.54 
(95%CI 1.10–2.16, P = 0.012) and 2.18 (95%CI 1.58–3.01, 
P < 0.001) in the medium and high LAR groups, respec-
tively. Similar results were observed for the other three 
models. Detailed data are shown in Table 2. These results 
indicate that LAR is an effective indicator of short-term 
all-cause mortality risk in patients with AECOPD.

A nonlinear relationship analysis
We explored the linear relationship between LAR and 
all-cause mortality due to AECOPD as a continuous 
variable. This study found that the relationship between 
LAR and all-cause mortality due to AECOPD was non-
linear (Fig. 3). Through GAM analysis of the correlation 
and threshold effect of LAR on all-cause mortality and 
adjustment for all indicators in Model II, we determined 
the threshold values for 1-month and 3-month all-cause 
mortality as 8.13 and 6.05, respectively. On the left side of 
the threshold, the effect size was 1.76 (95%CI 1.41–2.19, 
P < 0.001) and 5.88 (95%CI 1.97–17.51, P = 0.002); on the 
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right side of the threshold, the effect of 1-month all-cause 
mortality was 0.89 (95%CI 0.56–1.41, P = 0.618), and the 
effect of 3-month all-cause mortality was 1.24 (95%CI 
1.07–1.44, P = 0.003), with specific results seen in Table 3.

Subgroup analysis
We also conducted subgroup analysis and interaction 
tests to assess whether the correlation between LAR and 
all-cause mortality in patients with AECOPD was con-
sistent across different subgroups and adjusted for other 
factors in the subgroup analysis. The results showed 

that in most subgroups of patients with AECOPD, the 
medium and high LAR groups were associated with 
higher all-cause mortality (Table  4). It is important to 
note that an interaction was found in the sex subgroup 
analysis for 1-month all-cause mortality (interaction, 
P < 0.05), but the risk of death increased in both groups; 
therefore, we believe the results are still robust.

Table 1  Baseline characteristics of participants
Variables All Low LAR Middle LAR High LAR P-value
Number 654 218 218 218
LAR 89.85 (67.34-137.43) 58.93 (49.61–67.28) 89.85 (82.37-101.09) 170.31 (137.81-248.59) < 0.001
Log2 LAR 6.68 (0.94) 5.83 (0.30) 6.51 (0.18) 7.70 (0.84) < 0.001
Age, years 71.45 (10.97) 70.86 (12.12) 72.86 (10.21) 70.64 (10.39) 0.065
Gender, Female 318 (48.62%) 108 (49.54%) 110 (50.46%) 100 (45.87%) 0.598
Race 0.700
  White 434 (66.36%) 148 (67.89%) 145 (66.51%) 141 (64.68%)
  Black 52 (7.95%) 20 (9.17%) 18 (8.26%) 14 (6.42%)
  Asian 12 (1.83%) 2 (0.92%) 5 (2.29%) 5 (2.29%)
  Other 156 (23.85%) 48 (22.02%) 50 (22.94%) 58 (26.61%)
Heart Rate (beats/min) 93.95 (21.04) 92.55 (19.01) 93.22 (23.00) 96.07 (20.86) 0.179
Respiration rate (beats/min) 21.96 (6.14) 22.01 (6.43) 21.32 (5.17) 22.54 (6.67) 0.116
SBP (mmHg) 125.45 (25.71) 128.47 (25.05) 125.89 (25.33) 121.99 (26.43) 0.029
SpO2 (%) 95.63 (4.51) 95.79 (3.96) 95.76 (3.94) 95.33 (5.47) 0.485
Na+ (mmol/L) 138.35 (5.92) 137.41 (6.01) 138.54 (5.88) 139.10 (5.76) 0.014
K+ (mmol/L) 4.46 (0.84) 4.46 (0.79) 4.43 (0.83) 4.50 (0.91) 0.687
Glucose (mg/dL) 159.93 (90.58) 159.92 (85.34) 160.09 (71.39) 159.78 (110.73) 0.999
LDH (U/L) 279.00 (212.00-397.75) 198.00 (170.25–226.00) 280.50 (244.25–319.00) 493.00 (390.75-740.75) < 0.001
ALB (g/dl) 3.13 (0.57) 3.45 (0.47) 3.08 (0.50) 2.86 (0.58) < 0.001
BUN (mg/dl) 26.00 (17.00–41.00) 22.00 (16.00–33.00) 29.00 (18.00–42.00) 28.00 (18.00–48.00) < 0.001
Cr (mg/dL) 1.10 (0.80–1.60) 0.90 (0.70–1.30) 1.10 (0.80–1.70) 1.20 (0.80–1.80) 0.002
WBC (K/µL) 11.20 (7.70–15.70) 10.00 (7.20–13.40) 11.00 (7.60-14.55) 13.15 (8.40-18.48) < 0.001
HGB (g/dl) 10.73 (2.37) 10.89 (2.35) 10.45 (2.44) 10.83 (2.30) 0.130
PLT (K/µL) 204.00 (139.00-268.50) 215.00 (147.50-271.50) 202.00 (140.50-267.75) 187.00 (120.75–266.00) 0.071
Hypertension 234 (35.78%) 82 (37.61%) 77 (35.32%) 75 (34.40%) 0.771
Diabetes 218 (33.33%) 73 (33.49%) 75 (34.40%) 70 (32.11%) 0.877
CAD 275 (42.05%) 64 (29.36%) 98 (44.95%) 113 (51.83%) < 0.001
CHF 344 (52.60%) 110 (50.46%) 121 (55.50%) 113 (51.83%) 0.552
CKD 162 (24.77%) 47 (21.56%) 58 (26.61%) 57 (26.15%) 0.402
Liver disease 83 (12.69%) 22 (10.09%) 28 (12.84%) 33 (15.14%) 0.285
Malignancy 120 (18.35%) 37 (16.97%) 37 (16.97%) 46 (21.10%) 0.437
Obesity 215 (32.87%) 64 (29.36%) 75 (34.40%) 76 (34.86%) 0.398
Use of invasive ventilation 848 (35.86%) 105 (48.17%) 120 (55.05%) 154 (70.64%) < 0.001
Use of non-invasive ventilation 497 (20.50%) 43 (19.72%) 39 (17.89%) 23 (10.55%) 0.022
SOFA 4.21 (3.02) 3.92 (3.21) 4.26 (3.73) 5.12 (4.33) < 0.001
OASIS 37.06 (9.01) 34.70 (8.41) 36.56 (8.48) 39.92 (9.37) < 0.001
SAPSII 42.60 (13.81) 37.97 (11.98) 41.93 (12.00) 47.90 (15.36) < 0.001
1-month all-cause mortality 178 (27.22%) 45 (17.51%) 98 (29.97%) 35 (50.00%) < 0.001
3-month all-cause mortality 178 (27.22%) 178 (27.22%) 81 (37.16%) 103 (47.25%) < 0.001
ALB, albumin; BUN, blood urea nitrogen; CAD, coronary atherosclerotic disease; CHF, congestive heart failure; CKD, chronic renal failure; Cr, creatinine; HGB, 
hemoglobin; LAR, LDH/ALB ratio; LDH, lactic dehydrogenase; OASIS, oxford acute severity of illness score; PLT, platelet; SAPS II, simplified acute physiology score II; 
SBP, systolic pressure; SOFA, sequential organ failure assessment; SpO2, blood oxygen saturation; WBC, white blood cells
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Discussion
In this retrospective cohort study, we conducted an in-
depth analysis of the relationship between LAR levels 
and the prognosis of patients with AECOPD. The results 
showed that LAR levels were significantly and positively 
correlated with short-term all-cause mortality in patients 
with AECOPD. Specifically, the medium- and high-LAR 
groups had significantly increased 1-month and 3-month 
all-cause mortality risks compared with the low-LAR 
group, and the results remained stable in the subgroup 
analysis and three adjusted models. These findings sug-
gest that LAR may be an important prognostic predictor 
in patients with AECOPD and may serve as a potential 
biomarker for clinical practice.

In interpreting the clinical relevance of our results, we 
acknowledge that statistical significance (e.g., P-values) 
alone may not fully capture the practical implications 
of observed HRs. Recent methodological advancements 
propose the concept of minimal clinically important 

difference (MCID) for effect sizes beyond mean differ-
ences, such as HRs [19]. Horita et al. (2024) suggested 
that HR thresholds ≥ 1.2 could represent clinically mean-
ingful differences in prognostic studies [20], as smaller 
effects may lack practical impact despite statistical sig-
nificance. In our study, the adjusted HRs for medium 
and high LAR groups (1.74 and 2.58 for 1-month mor-
tality; 1.54 and 2.18 for 3-month mortality) substantially 
exceeded this threshold. This indicates that elevated LAR 
may not only be statistically associated with mortality 
but also carry clinical significance in risk stratification for 
AECOPD patients. However, further validation of MCID 
thresholds specific to COPD populations is warranted.

The metabolic characteristics of AECOPD are related 
to various factors including abnormalities in energy pro-
duction pathways, and an imbalance between oxidation 
and antioxidation. Disorders of these metabolic path-
ways may activate inflammatory signaling pathways, 
release inflammatory cytokines, activate oxidative stress, 

Table 2  Cox proportional hazard ratios (HRs) for all-cause mortality based on LAR
Log2 LAR Unadjusted model Model I Model II Model III

HR (95%CI) P HR (95%CI) P HR (95%CI) P HR (95%CI) P
1-month mortality
  Low LAR Ref Ref Ref Ref
  Middle LAR 1.74 (1.16, 2.63) 0.008 1.65 (1.10, 2.49) 0.017 1.68 (1.11, 2.54) 0.015 1.74 (1.09, 2.77) 0.020
  High LAR 2.58 (1.75, 3.80) < 0.001 2.69 (1.82, 3.99) < 0.001 2.67 (1.79, 3.98) < 0.001 2.38 (1.45, 3.92) < 0.001
3-month mortality
  Low LAR Ref Ref Ref Ref
  Middle LAR 1.54 (1.10, 2.16) 0.012 1.49 (1.06, 2.08) 0.022 1.51 (1.08, 2.13) 0.016 1.61 (1.09, 2.35) 0.015
  High LAR 2.18 (1.58, 3.01) < 0.001 2.26 (1.64, 3.12) < 0.001 2.27 (1.63, 3.16) < 0.001 2.20 (1.45, 3.33) < 0.001
Crude model: we did not adjust other covariates. Model I: we adjusted age, gender and race. Model II: we adjusted age, gender, race, hypertension, diabetes, CAD, 
CHF, CKD, liver disease, malignancy and obesity. Model III: we adjusted age, gender, race, HR, RR, SBP, SpO2, hypertension, diabetes, CAD, CHF, CKD, liver disease, 
malignancy, obesity, serum sodium, serum potassium, glucose, BUN, Cr, WBC, HGB, PLT, use of ventilator/ noninvasive ventilator, SOFA, OASIS, SAPSII. AECOPD, acute 
exacerbation of chronic obstructive pulmonary disease; BUN, blood urea nitrogen; CAD, coronary atherosclerotic disease; WBC, white blood cells; CHF, congestive 
heart failure; CI, confidence interval; CKD, chronic renal failure; Cr, creatinine; HGB, hemoglobin; LAR, Lactate dehydrogenase to albumin ratio; OASIS, oxford acute 
severity of illness score; PLT, platelet; SAPSII, simplified acute physiology score II; SBP, systolic pressure; SOFA, sequential organ failure assessment; SpO2, blood 
oxygen saturation; Ref, reference

Fig. 2  Kaplan-Meier curve analysis of all-cause mortality risk for AECOPD patients. A 1-month all-cause mortality risk.B 3-month all-cause mortality risk
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and thus promote the development and exacerbation of 
COPD [21, 22]. Lactic acid metabolism plays an impor-
tant role in AECOPD, and the accumulation of lactic acid 
may be related to tissue hypoxia, inflammation, and oxi-
dative stress, which together promote the pathological 
process of AECOPD [23, 24]. LDH is a key enzyme in the 
glycolysis pathway, acting as a catalyst for the conversion 
of pyruvic acid to lactic acid. It is widely distributed in 
various tissues and cells and is a diagnostic marker of dis-
eases and tissue damage [25]. A cohort study found that 
patients with a poor prognosis of AECOPD had higher 
serum LDH levels [26]. When a tissue is severely hypoxic 
or cell damage occurs, LDH is released from cells into the 
blood, and a significant increase in serum LDH levels can 
be detected [26].

Inflammation markers play a crucial role in the patho-
physiology of COPD, particularly C-reactive protein 
(CRP) and interleukin-6 (IL-6), which not only reflect dis-
ease severity but are also closely related to smoking status 

[27]. Smoking, a major risk factor for COPD, induces 
inflammatory responses and oxidative stress, thereby 
exacerbating the disease process. Therefore, levels of 
inflammation markers may be influenced by both the 
severity of COPD and the patient’s smoking status [28]. 
Notably, LAR, which combines metabolic and inflamma-
tory characteristics, may also play a role in reflecting the 
inflammatory burden in COPD patients [14].

Several studies have confirmed that increased LDH 
levels are associated with disease severity and poor 
prognosis. In sepsis, one study found that high levels of 
LDH were associated with increased 28-day mortality 
[29]. Another study confirmed that LDH was related to 
1-year all-cause mortality in patients with sepsis and was 
an important component in the model predicting 1-year 
all-cause mortality, which can significantly improve the 
accuracy of the model’s prediction [8]. In a retrospective 
cohort study involving 8,436 patients with acute kidney 
injury, in-hospital mortality increased with increased 
LDH and was almost linearly related [30].

Alb plays a key role in maintaining colloidal osmotic 
pressure in the human body. In addition to reflect-
ing nutritional status, Alb is involved in inflamma-
tory responses and antioxidant processes. Ma et al. [31] 
reported a negative association between the serum albu-
min and in-hospital mortality rates. A clinical cohort 
study found that low serum Alb levels were associated 
with poor short-term prognosis in patients with acute 
pulmonary embolism [32]. A recent retrospective cohort 
study indicated that low serum Alb levels were signifi-
cantly associated with the risk of adverse cardiac events, 
hospitalization frequency, and death in patients with 
chronic heart failure [33]. Another cohort study found 

Table 3  The results of two-piece wise linear regression model
Log2 LAR Inflection point HR(95%CI) P-value
1-month mortality < 8.13 1.76 (1.41, 2.19) < 0.001

≥ 8.13 0.89 (0.56, 1.41) 0.618
Likelihood ratio test 0.021

3-month mortality
< 6.05 5.88 (1.97, 17.51) 0.002
≥ 6.05 1.24 (1.07, 1.44) 0.003
Likelihood ratio test 0.003

Adjusted: age, gender, race, heart rate, respiration rate, SBP, SpO2, Temperature, 
hypertension, diabetes, CAD, CHF, CKD, liver disease, malignancy, obesity. CAD, 
coronary atherosclerotic disease; CHF, congestive heart failure; CI, confidence 
interval; CKD, chronic kidney disease; Ref, reference; SBP, systolic pressure; 
SpO2, blood oxygen saturation

Fig. 3  A nonlinear relationship analysis between LAR and all-cause mortality due to AECOPD. A 1-month all-cause mortality risk. B 3-month all-cause 
mortality risk
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that low serum Alb levels were closely related to persis-
tent organ failure and risk of mortality in patients with 
acute pancreatitis [34]. These findings emphasize the 
importance of monitoring and maintaining appropriate 
serum albumin levels during clinical treatment.

LAR is an easily detectable biomarker that has recently 
received increasing attention in the field of medicine. 
Studies have shown that LAR can independently pre-
dict poor prognosis in patients with various diseases 
including stroke [35], pulmonary embolism [13], cardiac 
arrest [36], and other vascular diseases. In addition, in 
infectious or pulmonary diseases, LAR has been associ-
ated with a poor prognosis. Lee et al. pointed out that 
LAR can effectively predict in-hospital mortality risk in 
patients with lower respiratory tract infections [37]. In 
patients with sepsis, an increase in LAR has been con-
firmed as an important predictor of all-cause death 
risk in the ICU [12]. In COVID-19 infected patients, a 
high LAR is related to increased COVID-19 mortality, 
ICU admission rate, and hospital stay, with an optimal 

critical value of 136 [38]. These studies suggest that LAR 
is a common and reliable prognostic indicator, which 
supports our results. Our data analysis showed that even 
after adjusting for all other influencing factors, medium 
and high LAR levels were still independently associated 
with all-cause death risk in AECOPD patients. These 
findings may help medical workers more accurately iden-
tify patients with severe AECOPD and take targeted 
intervention measures in a timely manner.

Although this study was based on a large-scale inten-
sive care database, it provides preliminary evidence 
for the potential application of LAR in predicting the 
all-cause death risk of patients with AECOPD. How-
ever, there are several limitations to the study results 
that should be considered. First, owing to the retro-
spective design of this study, there may be challenges of 
selection bias and incomplete data. Second, the study 
lacked detailed information about the severity grad-
ing of patients with COPD, the drugs used daily to con-
trol the symptoms of COPD, pulmonary function test 

Table 4  The results of subgroup analysis and interaction tests
1-month mortality 3-month mortality

Variables Total (n) Effect size (HR) P P for interaction Effect size (HR) P P for interaction
Age 0.430 0.384
<72 330 1.46 (1.20, 1.77) 0.001 1.36 (1.15, 1.61) 0.001
≥ 72 324 1.57 (1.31, 1.88) < 0.001 1.48 (1.25, 1.75) < 0.001
Gender 0.040 0.033
  Male 336 1.73 (1.42, 2.10) < 0.001 1.59 (1.34, 1.88) < 0.001
  Female 318 1.32 (1.10, 1.57) 0.002 1.25 (1.07, 1.46) 0.006
Hypertension 0.077 0.463
  No 420 1.35 (1.13, 1.61) 0.001 1.35 (1.16, 1.57) 0.001
  Yes 234 1.71 (1.40, 2.09) < 0.001 1.46 (1.22, 1.75) < 0.001
Diabetes 0.148 0.135
  No 436 1.55 (1.32, 1.82) < 0.001 1.46 (1.26, 1.69) < 0.001
  Yes 218 1.34 (1.06, 1.69) 0.014 1.27 (1.05, 1.54) 0.016 -
CAD 0.772 0.944
  No 379 1.47 (1.20, 1.79) 0.002 1.40 (1.18, 1.66) 0.001
  Yes 275 1.49 (1.24, 1.78) < 0.001 1.39 (1.18, 1.64) < 0.001
CHF 0.980 0.968
  No 310 1.50 (1.25, 1.80) < 0.001 1.40 (1.20, 1.64) < 0.001
  Yes 344 1.47 (1.22, 1.78) < 0.001 1.38 (1.16, 1.64) 0.002
CKD 0.421 0.824
  No 492 1.51 (1.30, 1.75) < 0.001 1.38 (1.21, 1.58) < 0.001
  Yes 162 1.40 (1.04, 1.88) 0.027 1.42 (1.10, 1.83) 0.006
Liver disease 0.789 0.855
  No 517 1.47 (1.27, 1.70) < 0.001 1.39 (1.22, 1.58) < 0.001
  Yes 83 1.53 (1.12, 2.09) 0.007 1.39 (1.06, 1.83) 0.017
Malignancy 0.392 0.454
  No 534 1.56 (1.33, 1.82) < 0.001 1.46 (1.27, 1.67) < 0.001
  Yes 120 1.24 (0.99, 1.56) 0.066 1.17 (0.95, 1.44) 0.144
Obesity 0.578 0.582
  No 439 1.49 (1.26, 1.76) < 0.001 1.40 (1.21, 1.62) < 0.001
  Yes 215 1.51 (1.22, 1.86) 0.002 1.40 (1.15, 1.69) 0.001
CAD, coronary atherosclerotic disease; CHF, congestive heart failure; CKD, chronic renal failure
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results, the St. George’s Respiratory Questionnaire 
(SGRQ), the COPD Assessment Test (CAT), and qual-
ity of life (QOL) scores. These indicators are significant 
for evaluating the overall health status and prognosis of 
COPD patients. Third, the MIMIC-IV database lacks 
data on key inflammatory markers, such as procalcitonin, 
C-reactive protein, and interleukin-6, which limits the 
accurate assessment of the patient’s inflammatory sta-
tus. Additionally, the specific identification rate of severe 
exacerbations within the COPD cohort was not avail-
able in the database, which may affect the comprehensive 
evaluation of AECOPD events. Lastly, the reliance solely 
on the MIMIC-IV ICU dataset may limit the generaliz-
ability of the results to broader populations, particularly 
those outside of intensive care settings. Therefore, more 
studies need to be conducted in a broader population, at 
multiple centers, and with long-term follow-up to further 
validate the prognostic value of LAR.

In summary, LAR is an effective indicator for predict-
ing short-term death risk of patients with AECOPD and 
is associated with poor prognosis. Future studies should 
further verify the prognostic value of LAR and explore its 
combined application with other biomarkers to improve 
the prediction accuracy, thereby providing a more accu-
rate prognostic assessment and treatment for patients 
with AECOPD.
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